
International Journal of Industrial Engineering, 32(1), 34-51, 2025

DOI: 10.23055/ijietap.2025.32.1.10505 ISSN 1072-4761 © INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING

A REINFORCEMENT LEARNING AND THE NORTHERN GOSHAWK OPTIMIZATION ALGO-

RITHM FOR FLEXIBLE JOB SHOP SCHEDULING PROBLEM

Changshun Shao1, 2, Zhenglin Yu1, 2, *, Han Hou2, Hongchang Ding1, 2, Guohua Cao1, 2, and Bin Zhou1, 2

1College of Mechanical and Electrical Engineering

Changchun University of Science and Technology

Changchun, China
*Corresponding author’s e-mail: zhenglin_yu@sina.com

2Chongqing Research Institute

Changchun University of Science and Technology

Chongqing, China

This paper introduces northern goshawk optimization, a novel global search strategy for the flexible job shop scheduling

problem. It uses two-stage encoding and random-key-based encoding to transform individual position vectors into flexible

job shop scheduling problem solutions. To improve local search, reinforcement learning is integrated, converting the flexible

job shop scheduling problem into a Markov decision process with 10 states and 6 rules. A reward function based on optimal

completion time guides the search. The proposed hybrid northern goshawk optimization-Q-learning-state-action-reward-

state-action framework combines global and local search strengths. Experiments on standard datasets show the algorithm's

superior performance, validating its effectiveness and practicality in solving the flexible job shop scheduling problem and

real-world production scheduling problems.

Keywords: Flexible Job Shop Scheduling Problem; Northern Goshawk Optimization; Reinforcement Learning.

(Received on September 16, 2024; Accepted on January 7, 2025)

1. INTRODUCTION

In the wave of global economic prosperity, manufacturing, as the backbone of the economic system, has increasingly emerged

as a strategic sector. Ahmet Melik Öztürk et al. (2022) proposed a cluster-based priority list method to generate improved

priority lists that reduce completion time, showing significant enhancements when compared to traditional methods using

benchmark data. At the heart of manufacturing, the flexible job shop scheduling problem (FJSP) has become increasingly

challenging due to the diversification and complex nature of production tasks, as well as the growing complexity of the

execution environment. Traditional scheduling methods are struggling to maximize production efficiency in rapidly changing

environments.

For a long time, traditional scheduling strategies based on static rules or heuristic algorithms have struggled to adapt to

the complex production environment. While these methods perform well in certain specific scenarios, their inherent limita-

tions, such as a lack of flexibility, adaptability, and global optimization capability, make it difficult to meet the modern

manufacturing industry's demands for production efficiency, cost control, and rapid market response. As the complexity of

production tasks increases and the number of uncertain factors in the production environment grows, traditional scheduling

methods have increasingly shown problems in task allocation, resource utilization, and time management, leading to frequent

problems such as low production efficiency and significant resource wastage.

However, over the past two decades, the development of computing technology and the rise of intelligent algorithms,

especially in the field of the FJSP, have brought about revolutionary changes in production scheduling. The application of

intelligent optimization techniques such as genetic algorithms, simulated annealing, and particle swarm optimization has

provided new solutions. These intelligent algorithms, by mimicking natural evolutionary processes, physical phenomena, or

the behavior of biological groups, can effectively search for optimal or near-optimal solutions in large-scale search spaces,

demonstrating strong global search capabilities and good robustness.

Despite the significant achievements of intelligent algorithms in solving the FJSP, they still lack the ability to self-learn

and adapt to complex environments. These methods often require manual parameter tuning and predefined rules, which can

be time-consuming and may not always be suitable for complex environments. Fortunately, with the rapid advancement of

artificial intelligence technology, more and more researchers are introducing reinforcement learning into the research of the

https://orcid.og/10.23055/ijietap.2025.32.1.10505
mailto:zhenglin_yu@sina.com

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

35

FJSP, infusing new vitality into this long-standing challenge. Reinforcement learning is a type of machine learning where an

agent learns to make decisions by interacting with its environment.

The application of reinforcement learning to the FJSP enables a keen perception and flexible adaptation to changes in

the production environment, significantly enhancing the overall efficiency and flexibility of the production line. In recent

years, with the deep integration of deep learning and reinforcement learning, deep reinforcement learning has demonstrated

tremendous application potential in the FJSP. While deep reinforcement learning demonstrates exceptional performance in

state parsing and value estimation, it may also face the challenge of "aesthetic fatigue" over time, referring to the gradual

decrease in novelty. Currently, the prevalent approach in academia is to integrate deep learning with reinforcement learning

to accurately fit the value function, thereby achieving a comprehensive capture of state information. However, to maintain

this advantage and seek further breakthroughs, we urgently need to explore new solutions based on existing achievements.

Based on the above background, this paper proposes an innovative approach by deeply studying previous achievements.

This method aims to combine the global search capabilities of intelligent algorithms with the local search capabilities of

reinforcement learning to achieve complementary advantages. Specifically, we introduce the northern goshawk optimization

(NGO), which has attracted attention due to its excellent global search ability and efficient convergence speed. For the FJSP,

the NGO not only demonstrates unprecedented novelty but also forms a perfect synergy with the local search capabilities of

reinforcement learning.

The contributions of this paper are described as follows:

(1) This paper employs an innovative global search strategy, namely the NGO, to solve the FJSP. This algorithm com-

bines a two-stage encoding technique, a random-key-based encoding method, and an efficient conversion mechanism that

effectively transforms individual position vectors into solutions for the FJSP, thereby achieving an effective representation

of the problem. By carefully selecting the population size, the NGO is deeply integrated with the FJSP, significantly enhanc-

ing the solution efficiency.

(2) This paper introduces reinforcement learning algorithms, specifically Q-learning and state-action-reward-state-ac-

tion (SARSA), for local search. By carefully designing 10 states and 6 scheduling rules, the FJSP is transformed into a Markov

decision process, and a reward function based on optimal completion time guides efficient local searches. Furthermore, a

hybrid algorithm framework called Northern Goshawk Optimization-Q-learning-SARSA (NGO-QLSA) is proposed, inte-

grating the global search capabilities of the NGO with the local search advantages of reinforcement learning. This combina-

tion enhances the algorithm's performance and broadens its application range.

(3) To validate the performance of the algorithm, we selected multiple standard datasets from Brandimarte, Dauzère,

Barnes, and Fattahi for experimentation. By comparing with various advanced algorithms, we found that the proposed algo-

rithm exhibits significant advantages and excellent performance in solving the FJSPs, fully demonstrating its effectiveness

and practicality.

Section 1 describes the FJSP and introduces the contributions of this paper. Section 2 overviews recent related work.

Section 3 details the FJSP, Section 4 introduces the proposed algorithm framework, and Section 5 presents the experimental

results. The final section concludes the paper.

2. RELATED WORK

2.1 Intelligent algorithms for solving the FJSPs

The papers on using intelligent algorithms to solve the FJSPs are extensive; only a portion is listed here. For instance, Fan et

al. (2022) proposed an improved genetic algorithm with problem-specific encoding and decoding strategies to address the

FJSP with machine reconfiguration. Meng et al. (2023) developed an enhanced genetic algorithm with a unique population

diversity check method to minimize the manufacturing span and investigate the FJSP with limited automated guided vehicles.

Shen (2022) introduced an adaptive mutation probability function combined with an adaptive crossover operator and im-

proved the fitness function to enhance the traditional genetic algorithm for solving the FJSP. Kong et al. (2024) proposed an

enhanced discrete particle swarm optimization algorithm that incorporates Pareto optimization and nonlinear adaptive inertia

weight strategies to minimize multiple objectives. Zhou et al. (2024) introduced an adaptive gray wolf fast optimization

algorithm that enhances the traditional gray wolf algorithm with a non-linear convergence factor and spiral search mechanism

to efficiently solve the FJSP. Fan et al. (2024) proposed a genetic chaos levy nonlinear tuna swarm optimization algorithm

to address the FJSP with random machine breakdowns, aiming to minimize the maximum completion time and enhance

stability. Mei et al. (2024) proposed an adaptive simulated annealing non-dominated sorting genetic algorithm II to optimize

the multi-objective FJSP.

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

36

2.2 Deep reinforcement learning algorithms for solving the FJSPs

There are quite a few papers that use deep reinforcement learning to solve the FJSPs. Here are some examples: Zeng et al.

(2022) developed a deep reinforcement learning solution combining graph neural networks (GNN) and multi-layer perceptron

(MLP) with asynchronous advantage actor-critic optimization, effectively reducing training time. Saqlain et al. (2023) intro-

duced a Monte Carlo tree search-based FJSP algorithm for real-time scheduling in complex environments. Lei et al. (2022)

proposed an algorithm using multi-pointer graph networks and multi-policy optimization to learn high-quality allocation

strategies. Jing et al. (2024) designed a multi-agent reinforcement learning structure based on graph convolutional networks

for personalized manufacturing, addressing high flexibility and dynamic response. Yuan et al. (2023) transformed combina-

torial optimization into a multi-stage decision-making problem using a multi-agent double deep Q-network. Wang et al.

(2023) combined a self-attention model with deep reinforcement learning to handle complex relationships between operations

and machines. Song et al. (2022) merged operation selection and machine allocation into a composite decision using an

isomorphic graph neural network. Zhang et al. (2024) used graph attention networks and Transformer encoders to extract

global state information and generate operation strategies. Du et al. (2022) presented a deep Q-network model for the multi-

objective FJSP, optimizing completion time and energy consumption. Wan et al. (2024) proposed a deep actor-critic rein-

forcement learning approach for the FJSP. Wan et al. (2024) proposed a novel end-to-end deep reinforcement learning method

with a meta-path-based heterogeneous graph neural network that efficiently solves the FJSP. Yuan et al. (2024) introduced a

lightweight MLP-based framework to reduce computational complexity, enhancing state representation and action space

design.

2.3 Intelligent algorithms and Reinforcement learning algorithms for solving the FJSPs

Papers that combine intelligent algorithms and reinforcement learning to solve the FJSPs are relatively rare, making this a

promising research direction. Below are three examples:

Chen et al. (2020) proposed a self-learning genetic algorithm that utilizes a genetic algorithm as the basic optimization

method and intelligently adjusts its key parameters based on reinforcement learning, addressing the problem of intelligent

algorithms lacking self-learning and adaptability to environmental changes. Long et al. (2022) proposed an improved self-

learning artificial bee colony algorithm based on reinforcement learning. In this algorithm, the update dimension of the arti-

ficial bee colony is intelligently selected based on reinforcement learning, improving convergence speed and accuracy. Chen

et al. (2024) proposed a Q-Learning-based non-dominated sorting genetic algorithm II algorithm to address the dynamic FJSP

with limited transportation resources, considering job cancellation, machine breakdown, and automated guided vehicle break-

down, demonstrating the algorithm's effectiveness in minimizing completion time and total energy consumption while main-

taining rescheduling stability through simulation experiments.

3. PROBLEM DESCRIPTION

In the context of the FJSP, we consider a system comprised of 𝑚 machines, denoted as 𝑀𝜖{𝑀1,𝑀2, ⋯ ,𝑀𝑚}. Each machine

has specific functionalities and processing capabilities, potentially suitable for different types of operations. Additionally,

there are 𝑛 jobs that need to be processed, labeled as 𝐽𝜖{𝐽1, 𝐽2, ⋯ , 𝐽𝑛}. Each job consists of a sequence of operations that must

be executed in a predefined order. Notably, each operation is not limited to a single machine but can be performed on any

machine within its allowable set, which adds flexibility to the scheduling process while also increasing its complexity.

For each job, its series of operations must be carried out in a strictly sequential manner, meaning that subsequent oper-

ations can only begin once all preceding operations have been completed. This dependency is defined by precedence con-

straints between operations. Furthermore, each operation can be executed on a designated set of machines, depending on the

technical requirements of the operation and the capabilities of the machines. For example, some operations may require

specific tools or equipment that are only available on certain machines. (Dauzère-Pérès, S et al. 2024, Demir, Y et al. 2014)

The Definition of Notation of the paper is shown as follows:

• 𝑂: The operation set, the index used include j, g;

• 𝑛𝑖: The number of operations of job i;

• 𝑀𝑘: k -th machine;

• 𝑂𝑖𝑗: The j -th operation of i -th job;

• 𝑀𝑖𝑗: The processing machine for 𝑂𝑖𝑗;

• 𝐶𝑖𝑗: The completion time of operation 𝑂𝑖𝑗.

Minimizing the maximum completion time (makespan) in the FJSP is a critical performance indicator that significantly

enhances production efficiency and resource utilization. A shorter makespan leads to more streamlined production planning,

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

37

reducing idle times and improving throughput. This not only maximizes the use of machines and labor but also reduces

operational costs, including energy, maintenance, and labor expenses. Additionally, a minimized makespan can improve

customer satisfaction by enabling faster delivery times, which is essential in today's competitive market. Overall, optimizing

the makespan is key to achieving higher productivity, cost savings, and better responsiveness to market demands.

The formula for minimizing the makespan is shown in Equation 1.

𝑓 = min(𝑚𝑎𝑥(𝐶𝑖,𝑛𝑖)) (1)

4. THE PROPOSED APPROACH FOR FJSP

The approach adopted in this paper is divided into two phases. In the first phase, the NGO is utilized, primarily leveraging

its global search capabilities. In the second phase, a reinforcement learning algorithm is employed, primarily focusing on its

local search abilities.

4.1 The first stage - Northern Goshawk optimization algorithm

4.1.1 Basic Algorithm Description

Mohammad et al. (2021) were inspired by the natural hunting behavior of the northern goshawk and proposed the NGO. The

algorithm is based on two behaviors exhibited by the northern goshawk during hunting: prey identification and pursuit-eva-

sion.

The 𝑢𝑏 and 𝑙𝑏 represent the upper and lower position boundaries of the northern goshawk, the initialization of the pop-

ulation positions in the NGO is represented by Equation 2.

𝑥 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑 ∗ (𝑢𝑏 − 𝑙𝑏) (2)

Identification and Attack: This involves randomly selecting prey in the search space to enhance the algorithm's explo-

ration capabilities, aiming at a global search of the space. r and I are random numbers, 𝐹𝑖 is fitness, 𝑥𝑖,𝑗 is the individual

position of goshawk, 𝑝𝑖,𝑗 is the individual position of prey. 𝑋𝑖 is the population position of Goshawk and 𝐹𝑖
𝑛𝑒𝑤,𝑃1

 is the ob-

jective function value of the first stage. As shown in Equation 3, and Equation 4 is the updated position according to whether

the fitness is reduced.

𝑥𝑖,𝑗
𝑛𝑒𝑤,𝑃1 = {

𝑥𝑖,𝑗 + 𝑟(𝑝𝑖,𝑗 − 𝐼𝑥𝑖,𝑗), 𝐹𝑃𝑖 < 𝐹𝑖

𝑥𝑖,𝑗 + 𝑟(𝑥𝑖,𝑗 − 𝑝𝑖,𝑗), 𝐹𝑃𝑖 ≥ 𝐹𝑖
 (3)

𝑋𝑖 = {
𝑋𝑖
𝑛𝑒𝑤,𝑃1, 𝐹𝑖

𝑛𝑒𝑤,𝑃1 < 𝐹𝑖

𝑋𝑖 , 𝐹𝑖
𝑛𝑒𝑤,𝑃1 ≥ 𝐹𝑖

 (4)

Chase and Evasion: During the hunting process, once the northern goshawk attacks, the prey tries to escape. This ongo-

ing chase and evasion require the goshawk to track its target continuously in various complex environments until it's finally

caught. This natural hunting pattern is skillfully simulated in algorithm design, enhancing the algorithm's ability to conduct

deep searches in local areas of the search space and significantly improving search efficiency and accuracy. The t is the

iteration counter, T is the maximum number of iterations, and 𝐹𝑖
𝑛𝑒𝑤,𝑃2

 is the objective function value of the second stage, the

update formulas for this phase are represented by Equation 5 to Equation 7.

𝑅 = 0.02(1 − 𝑡/𝑇) (5)

𝑥𝑖,𝑗
𝑛𝑒𝑤,𝑃1 = 𝑥𝑖,𝑗 + 𝑅(2𝑟 − 1)𝑥𝑖,𝑗 (6)

𝑋𝑖 = {
𝑋𝑖
𝑛𝑒𝑤,𝑃2, 𝐹𝑖

𝑛𝑒𝑤,𝑃2 < 𝐹𝑖

𝑋𝑖 , 𝐹𝑖
𝑛𝑒𝑤,𝑃2 ≥ 𝐹𝑖

 (7)

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

38

4.1.2 Combination of NGO and FJSP

Coding mechanism: This paper uses a two-segment encoding with random keys for these jobs. For a workshop with 4 jobs,

each having 2 operations and element values ranging from -4 to 4, the individual position vector of NGO can be expressed

as 𝑋 = {𝑥(1), 𝑥(2),⋯ , 𝑥(𝑙),⋯ , 𝑥(2𝑙)}, illustrated in Figure 1.

Figure 1. Individual position vector

Conversion mechanism: This paper adopts the methods from references (Yuan Y et al., .2013) and (Wang et al.,2008)

to achieve the conversion between continuous and discrete values.

(1) Conversion of continuous individual position values to discrete scheduling solutions

(a) Machine selection: Convert the continuous values of the individual position into indices of selectable machines for

each operation, obtaining the machine numbers, 𝑧(ℎ) represents the number of optional machines for operation ℎ; 𝑢(ℎ) ∈
[1, 𝑧(ℎ)] represents the serial number of the selected machine in the process optional machine, as shown in Equation 8.

𝑢(ℎ) = 𝑟𝑜𝑢𝑛𝑑 (
𝑥(ℎ) + 𝜖

2𝜖
(𝑧(ℎ) + 1) + 1) , 1 ≤ ℎ ≤ 𝑙 (8)

(b) Operation sequencing: Each element is assigned a unique rank order value (ROV) using the ascending order sorting

rules. Then, based on the ROV values, an operation sequencing scheme is constructed, as illustrated in Figure 2.

Figure 2. Position values to scheduling solutions

(2) Conversion of discrete scheduling values to continuous individual positions

(a) Machine selection: Select the machine according to Equation 9.

𝑥(ℎ) =
2𝜖

𝑧(ℎ) − 1
(𝑢(ℎ) − 1) − 𝜖, 𝑧(ℎ) ≠ 1 (9)

If 𝑧(ℎ) = 1, indicating that an operation has only one selectable machine, then 𝑥(ℎ) can take any value within [−𝜖, 𝜖].
(b) Operation sequencing: Generate 𝑙 random numbers within [−𝜖, 𝜖], assign each ROV in ascending order for opera-

tion sequencing, and determine the individual position vector element values based on the operation numbers. As is shown

in Figure 3.

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

39

Figure 3. Scheduling values to position values

Population Initialization and Fitness Calculation: The method used in this paper for initializing the population adopts

a random machine and random operation approach. For the operation part, the operations are obtained in the order of job

numbers. For the machine selection part, an optional machine list is generated for each operation, and the machines are

randomly selected for each operation. The fitness calculation involves determining the makespan for each individual. For a

given job sequence, first, select a job and determine the machine and processing time based on machine availability. Then,

find the earliest available slot for the machine. Repeat until all jobs are processed, and calculate the final completion time.

Algorithm Solution Steps:

Step 1: Initialize the maximum iteration count T and the number of individuals in the initial population N;

Step 2: Calculate the fitness function;

Step 3: Convert the initial population into the individual positions of the northern goshawk;

Step 4: Phase 1: Randomly select a prey and then update the individual positions according to Equation 3 and Equa-

tion 4;

Step 5: Phase 2: Update R based on Equation 5, and then update the individual positions using Equation 6 and Equa-

tion 7;

Step 6: Convert the individual positions of the northern goshawk into the operation sequencing process and select the

machines;

Step 7: Determine if the algorithm meets the termination condition. If it does, proceed to Step 8; otherwise, go back

to Step 2;

Step 8: The algorithm ends and outputs the results. The flowchart is shown in Figure 4.

Figure 4. NGO algorithm flowchart

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

40

4.2 The Second Stage - Reinforcement Learning Algorithm

4.2.1 Basic Description

Reinforcement learning enables an agent to achieve a goal by learning an optimal policy through interactions with its envi-

ronment. The agent explores different actions to receive reward signals from the environment, subsequently adjusting its

policy to maximize the total return. Reinforcement learning comprises an agent, an environment, a state 𝑠𝑡, an action 𝑎𝑡, a

reward 𝑟(𝑡), and a policy 𝑝𝑡. This process can be described as a Markov decision process (MDP). (Lei, et al., 2023, Li, et al.,

2023). The policy can be represented by a state transition probability function p, as shown in Equation 10.

𝑝𝑡(𝑠𝑡+1|𝑠𝑡 , 𝑎) = 𝑝(𝑆𝑡+1 = 𝑠𝑡+1|𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎) (10)

The key to adopting reinforcement learning is determining the policy, denoted by π. The evaluation of a policy's effec-

tiveness is primarily determined by the cumulative reward. In reinforcement learning, the value of a policy is often derived

by calculating the expected cumulative reward. This value comprises the action-value function and the state-value function,

represented by q and v, respectively, 𝑈𝑡 represents the cumulative reward, and 𝐸 stands for taking the expectation, As is

shown in Equation 11.

{

𝜋(𝑎|𝑠) = 𝑝(𝐴 = 𝑎|𝑆 = 𝑠) (𝑎)

𝑞(𝑠𝑡, 𝑎𝑡) = 𝐸(𝑈𝑡|𝑆𝑡 = 𝑠𝑡, 𝐴𝑡 = 𝑎) (𝑏)

𝑣(𝑠𝑡) = 𝐸(𝑞(𝑠𝑡 , 𝐴𝑡)) (𝑐)

 (11)

The goal of reinforcement learning is to enable the agent to learn an optimal policy through interactions with the envi-

ronment, such that the agent can select the optimal action in any state to maximize the cumulative reward. In this paper, the

value function approach of reinforcement learning is chosen to address the FJSP.

The SARSA algorithm (Zhao et al., 2016) is an on-policy method, and its iterative expression is as follows:

𝑞(𝑠𝑡 , 𝑎𝑡) ← 𝑞(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾 𝑞(𝑠𝑡+1, 𝑎𝑡+1) − 𝑞 (𝑠𝑡 , 𝑎𝑡)] (12)

where, 𝑎𝑡 and 𝑎𝑡+1 are both selected using an ε-greedy policy based on the q-values.

Q-learning (Clifton et al., 2020) is an off-policy method, and its iterative update equation is expressed as follows:

𝑞(𝑠𝑡 , 𝑎𝑡) ← 𝑞(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾 max
𝑎∈𝐴(𝑠𝑡+1)

𝑞(𝑠𝑡+1, 𝑎) − 𝑞 (𝑠𝑡, 𝑎)] (13)

where, 𝑎𝑡 is sampled using an ε-greedy method based on the q-values, but 𝑎 is chosen greedily. This is where Q-learning

differs from SARSA: the behavior policy is ε-greedy, while the target policy is greedy.

4.2.2 Converting FJSP to MDP

State: The state design follows the reference (Shahrabi et al., 2017) with improvements, focusing on minimizing the maxi-

mum completion time, which also serves as the fitness for the NGO scenario. The final state value is determined by the

minimum and average completion times of the population, using three equations, as shown in Equation 14.

{

 𝑓𝑖𝑡𝑛𝑒𝑤

𝑡 =
∑ 𝑓𝑖𝑡(𝑥𝑖

𝑡)𝑁
𝑖=1

𝑁
 (𝑎)

𝑚𝑎𝑥𝑛𝑒𝑤
𝑡 = 𝑚𝑎𝑥𝑓𝑖𝑡(𝑥𝑖

𝑡) (𝑏)

𝑆𝑛𝑒𝑤 = 𝑤1 ∗
𝑓𝑖𝑡𝑛𝑒𝑤

𝑡

𝑓𝑖𝑡𝑛𝑒𝑤1
+ 𝑤2 ∗

𝑚𝑎𝑥𝑛𝑒𝑤
𝑡

𝑚𝑎𝑥𝑛𝑒𝑤1
 (𝑐)

 (14)

where 𝑓𝑖𝑡(𝑥𝑖
𝑡) represents the fitness of individual 𝑖 in the t -th generation, 𝑓𝑖𝑡𝑛𝑒𝑤

𝑡 is the average fitness of the t -th generation,

and 𝑚𝑎𝑥𝑓𝑖𝑡(𝑥𝑖
𝑡) is the fitness of the optimal individual in the t -th generation. Weights 𝑤1 and 𝑤2 are both set to 0.5. 𝑆𝑛𝑒𝑤

represents the state. To balance representation and exploration, 10 states are selected, denoted as 𝑆𝑛𝑒𝑤 =
{𝑆𝑛𝑒𝑤(1), 𝑆𝑛𝑒𝑤(2), 𝑆𝑛𝑒𝑤(3),⋯ , 𝑆𝑛𝑒𝑤(10)} . The interval values of 𝑆𝑛𝑒𝑤 are set to 0.1, i.e., if 𝑆𝑛𝑒𝑤 ∈ [0,0.1), 𝑆𝑛𝑒𝑤 =
𝑆𝑛𝑒𝑤(1); 𝑆𝑛𝑒𝑤 ∈ [0.1,0.2), 𝑆𝑛𝑒𝑤 = 𝑆𝑛𝑒𝑤(2) and so on.

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

41

Action: This paper redesigns six rules as actions, and one of them is randomly selected when choosing an action.

Rule 1: Randomly select an operation sequence, then swap two randomly chosen elements corresponding to different

jobs; Rule 2: Select two elements A and B (A before B) from the operation sequence, remove B, and insert it before A,

maintaining the relative order of other elements; Rule 3: Randomly select start and end positions in the operation sequence,

reverse the elements between these positions, and reinsert them; Rule 4: Randomly select two parent operation sequences,

divide them into subsets, swap the genes of jobs in one subset between parents, and choose one offspring as the new solution

based on a random number; Rule 5: Randomly select an operation, find available machines and their processing times, and

select the machine with the minimum processing time; Rule 6: Initialize relevant parameters, iterate through operations to

update machine and job statuses, and for the job with the maximum completion time, select the machine with the minimum

processing time for its last operation.

Reward: The reward function aims to maximize the immediate impact of actions, with cumulative rewards aligning

with the optimization direction of the objective function. In solving the FJSP, the most common reward function is based on

single-step transition time. This paper's reward function follows this approach, as is shown in Equation 15.

𝑟(𝑡) =
𝑚𝑎𝑥𝑓𝑖𝑡(𝑥𝑖

𝑡) − 𝑚𝑎𝑥𝑓𝑖𝑡(𝑥𝑖
𝑡−1)

𝑚𝑎𝑥𝑓𝑖𝑡(𝑥𝑖
𝑡−1)

 (15)

where，𝑚𝑎𝑥𝑓𝑖𝑡(𝑥𝑖
𝑡) is the fitness of the optimal individual of the t-th generation population.

Policy: The Q-learning policy and SARSA policy is selected using Equation 16.

𝜋(𝑠𝑡 , 𝑎𝑡) = {
𝑎(𝑅𝑎𝑛𝑑𝑜𝑚 6 𝑟𝑢𝑙𝑒𝑠) 𝑅𝑎𝑛𝑑𝑜𝑚 < 𝜀
𝑚𝑎𝑥𝑎𝑄(𝑠𝑡, 𝑎) 𝑅𝑎𝑛𝑑𝑜𝑚 ≥ 𝜀

 (16)

The reinforcement learning algorithm adopted in this paper is a combination of Q-learning and SARSA algorithm,

referred to as QLSA. Select by setting a range, as is shown in Equation 17.

𝑄𝐿𝑆𝐴 = {
𝑆𝐴𝑅𝑆𝐴 𝑡 < (𝑇 − 𝑡) ∗ 𝑠𝑛𝑢𝑚 ∗ 𝑎𝑛𝑢𝑚 ∗ 0.01
𝑄 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑡 ≥ (𝑇 − 𝑡) ∗ 𝑠𝑛𝑢𝑚 ∗ 𝑎𝑛𝑢𝑚 ∗ 0.01

 (17)

where t is the t-th generation population, that is, the t-th iteration; T is the total number of iterations; 𝑠𝑛𝑢𝑚 is the state

dimension; 𝑎𝑛𝑢𝑚 is the action dimension. The algorithm flow is shown in Figure 5.

Figure 5. QLSA flowchart

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

42

4.3 Overall Algorithm Flow

The algorithm ultimately adopted in this paper to solve the FJSP is a combination of the NGO and QLSA algorithms, referred

to as NGO-QLSA.

NGO-QLSA Algorithm

1 Initialize population size N and number of iterations T; Initialize Q value table for each state-action pair; Ini-

tialize the transition conditions between NGO and QLSA: stagnate limit=round(T*0.3); Initialize the dis-

count factor 𝛾， learning rate 𝛼， greed factor 𝜀;

2 While 1: T:

3 If t < stagnate limit:

4 Use NGO for global search;

5 else:

6 if t<(T-t)*snum*anum*0.01:

7 Use SARSA for local search;

8 else:

9 Use Q-learning for local search;

10 End if;

11 End if;

12 End While.

5. EXPERIMENTAL RESULTS

5.1 Experimental preparation

To validate the proposed algorithm for solving the FJSP, this paper uses internationally recognized benchmark instances for

experimental numerical analysis. Four groups of instances are selected (Behnke D et al., 2012):

1. The first 10 problem instances from Brandimarte's FJSP benchmark showcase moderate flexibility.

2. 18 job shop problem instances by Dauzère-Pérès and Paulli, adapted for the FJSP to test broader scenarios.

3. 21 FJSP-specific instances by Chambers and Barnes serving as key references.

4. 20 small-to-medium-sized FJSP instances by Fattahi et al., including 10 small-scale and 10 medium-scale in-

stances.

These benchmarks provide a comprehensive dataset for evaluating the algorithm's performance across different problem

sizes. The algorithm is implemented in MATLAB R2024a on a platform with an Intel Core i5-10600KF CPU and an NVIDIA

GeForce GTX 1050 Ti GPU, running Windows 10 64-bit, ensuring a suitable environment for training and testing.

5.2 Reinforcement learning hyperparameter selection

In the NGO algorithm used in this paper, the population size is set to N=100. Due to the adaptive process of reinforcement

learning, the hyperparameters of reinforcement learning need to be determined, including the discount factor γ, learning rate

α, and greed factor ε. Three combinations are set to test the convergence rate of the algorithm, specifically: Combination 1:

[γ=0.9, α=0.3, ε=0.9], Combination 2: [γ=0.8, α=0.2, ε=0.9], and Combination 3: [γ=0.7, α=0.15, ε=0.9].

Four benchmark instances are selected for experimentation: Mk01 from Brandimarte, 10a from Dauzère-Pérès, mt10c1

from Barnes, and Fattahi20 from Fattahi. Each instance is tested using the aforementioned three combinations. Each instance

is trained 10 times under each combination, and Figure 6 shows one such result. (Combination 1 is blue, Combination 2 is

red, and Combination 3 is yellow).

From the iteration plots, it is evident that combinations 2 and 3 exhibit more significant advantages in terms of iterative

convergence. Considering the Markovian nature of reinforcement learning, which underscores the immediate state's direct

influence on subsequent states, a smaller discount factor is preferred to place greater emphasis on immediate rewards. This

approach facilitates quicker adaptation to changes in the environment, aligning well with the principles of reinforcement

learning. Moreover, by reducing the learning rate, we ensure policy updates occur in a more stable and gradual manner, thus

preventing substantial fluctuations that can arise from overly aggressive learning rates.

Taking these factors into account, this paper opts for combination 3. This choice is driven not only by its superior

performance in iterative convergence but also by its ability to meet the stability requirements critical for practical applications.

Combination 3 stands out as an optimal solution for enhancing the performance of the learning system. It achieves a balance

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

43

between improving efficiency and ensuring reliability, providing a solid foundation for the practical deployment of reinforce-

ment learning models. Therefore, combination 3 represents an ideal selection for optimizing the model's learning process and

boosting its effectiveness in real-world scenarios.

Figure 6. Hyperparameter selection iteration plots

5.3 Experimental Results

5.3.1 Percentage Deviation

Define the best percentage deviation (BPD) as the percentage deviation of 𝐶𝑚𝑎𝑥 relative to the upper baseline (UB) (Behnke

et al.,2012), with the formulas given in Equation 18.

𝐵𝑃𝐷 =
𝐶𝑚𝑎𝑥 − 𝑈𝐵

𝑈𝐵
× 100% (18)

where 𝐶𝑚𝑎𝑥 is the makespan. To further validate the effectiveness of the proposed framework, this paper also conducts abla-

tion studies, solving the FJSP using only the NGO and only the QLSA.

5.3.2 Brandimarte instance results and comparison

Select the first 10 problem instances from Brandimarte's generalized FJSP benchmarks, recording the 𝐶𝑚𝑎𝑥. Compare the

algorithm proposed in this paper with the algorithm (GA-Q, GA-SARSA, SLGA) from reference (Chen et al., 2020), the

algorithm (MPGN-multi-PPO) from reference (Lei et al., 2022), the algorithm (GNN-PPO) from reference (Yuan et al.,

2024). The first value is the makespan, and the second is the BPD (%) (same below), as shown in Table 1. (In this instance,

UB refers to the theoretical optimal value).

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

44

Table 1. The results and comparison of Brandimarte instances

Instance UB GA-Q
GA-

SARSA
SLGA GNN-PPO

MPGN-

multi-PPO
NGO QLSA

NGO-

QLSA

Mk01(10*6) 36
42 41 40* 44 47 42 43 42

16.7 13.9 11.1 22.2 30.6 16.7 19.4 16.7

Mk02(10*6) 24
31 30 27 31 30 29 31 27*

29.2 25.0 12.5 29.2 25.0 20.8 29.2 12.5

Mk03(15*8) 204
211 205 204 211 204 204 213 204*

3.4 0.5 0 3.4 0 0 4.4 0

Mk04(15*8) 48
75 67 60* 78 76 67 81 66

56.3 39.6 25.0 62.5 58.3 39.6 68.8 37.5

Mk05(15*4) 168
177 176 172 183 178 177 180 172*

5.4 4.8 2.4 8.9 6.0 5.4 7.1 2.4

Mk06(10*10) 33
73 72 69 74 79 67 87 67*

121 118 109 124 139 103 164 103

Mk07(20*5) 133
155 151 144 156 152 150 150 143*

16.5 13.5 8.3 17.3 14.3 12.8 12.8 7.5

Mk08(20*10) 523
526 533 523 524 541 523 524 523*

0.6 1.9 0 0.2 3.4 0 0.2 0

Mk09(20*10) 299
342 338 320 326 335 332 345 311*

14.4 13.0 7.0 9.0 12.0 11.0 15.4 4.0

Mk10(20*15) 165
281 278 254 241 236 250 294 224*

70.3 68.5 53.9 46.1 43.0 51.5 78.2 35.8

By comparing the performance of the algorithms on the 10 instances, we can observe the following points:

In multiple instances, the NGO-QLSA algorithm found superior completion times, indicating that this algorithm has

better optimization capabilities in solving the FJSPs. When comparing NGO and QLSA in solving the FJSPs, NGO performed

better on these 10 instances, indicating that global search played a significant role. Together with local search, this combina-

tion led to the superior performance of NGO-QLSA.

Table 2 shows the optimal solutions compared to a collaborative agent reinforcement learning (CARL), genetic algo-

rithm (GA), particle swarm optimization (PSO) in reference (Zhang et al., 2024), as well as two scales mentioned in reference

(Song et al., 2022) and construction scheduling rules (Heuristic) (Ziaee, M et al., 2014), a multi-agent model algorithm based

on chemical reaction optimization and greedy meta-heuristics (MACROG) (Marzouki et al., 2017)

Table 2. The results and comparison of Brandimarte instances

Instance UB GA PSO
Song

20×5

Song

20×10
Heuristic

MAC-

ROG
CARL

NGO-

QLSA

Mk01(10*6) 36
42 46 55 48 42 40* 44 42

16.7 27.8 52.8 33.3 16.7 11.1 22.2 16.7

Mk02(10*6) 24
41 35 42 43 28 32 31 27*

70.8 45.8 75 79.2 16.7 33.3 29.2 12.5

Mk03(15*8) 204
238 212 232 213 204 204 207 204*

16.7 3.9 13.7 4.4 0 0 1.5 0

Mk04(15*8) 48
74 71 82 75 75 64* 69 66

54.2 47.9 70.8 56.3 56.3 33.3 43.8 37.5

Mk05(15*4) 168
188 185 205 185 179 179 177 172*

11.9 10.1 22.0 10.1 6.6 6.6 5.4 2.4

Mk06(10*10) 33
115 98 110 103 69 85 77 67*

248 197 233 212 109 158 133 103

Mk07(20*5) 133
183 176 215 214 154 172 151 143*

37.6 32.3 61.7 60.9 15.8 29.3 13.5 7.5

Mk08(20*10) 523 523 557 525 523 555 552 531 523*

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

45

Instance UB GA PSO
Song

20×5

Song

20×10
Heuristic

MAC-

ROG
CARL

NGO-

QLSA

0 6.5 0.4 0 6.1 5.5 1.5 0

Mk09(20*10) 299
361 345 424 333 342 421 334 311*

20.7 15.4 41.8 11.4 14.4 40.8 11.7 4.0

Mk10(20*15) 165
319 247 266 266 242 358 186* 224

93.3 49.7 61.2 61.2 46.7 117 12.7 35.8

After conducting the aforementioned detailed comparative analysis, we can clearly see that the algorithm proposed in

this paper exhibits significant advantages in performance compared to other reinforcement learning algorithms and intelligent

algorithms. This remarkable superiority not only demonstrates the exceptional efficacy of our algorithm but also fully vali-

dates its high effectiveness and reliability.

5.3.3 Dauzère instance results and comparison

We have selected 18 problem instances from the generalized FJSP benchmarks proposed by Dauzère and the 𝐶𝑚𝑎𝑥 was rec-

orded. Our algorithm is compared with the UB in reference (BehnkeD et al., 2012), the algorithm (CARL) from reference

(Zhang et al., 2024), the algorithm (MPGN-multi-PPO) from reference (Lei et al., 2022), the algorithm (GNN-PPO) from

reference (Yuan et al., 2024), NGO and QLSA. Table 3 displays the results.

Table 3. The results and comparison of Dauzère instances

Instance UB CARL
MPGN-

multi-PPO
GNN-PPO NGO QLSA

NGO-

QLSA

01a 2518
2980 3109 2947 2697 2855 2604*

18.4 23.5 17.0 7.1 13.4 3.4

02a 2231
2483 2603 2495 2385 2509 2335*

11.3 16.7 11.8 6.9 12.5 4.7

03a 2229
2366 2366 2320 2423 2472 2280*

6.2 6.2 4.1 8.7 10.9 2.3

04a 2503
3055 3093 3037 2640 2758 2569*

22.1 23.6 21.3 5.5 10.2 2.6

05a 2216
2422 2573 2496 2428 2421 2333*

9.3 16.1 12.6 9.6 9.3 5.3

06a 2196
2330 2508 2286 2347 2375 2283*

6.1 14.2 4.1 6.9 8.2 4.0

07a 2283
2854 2857 2820 2566 2629 2478*

25.0 25.1 23.5 12.4 15.2 8.5

08a 2069
2327 2386 2259* 2588 2417 2365

12.5 15.3 9.2 25.1 16.8 14.3

09a 2066
2171 2209 2155* 2299 2508 2361

5.1 6.9 4.3 11.3 21.4 14.3

10a 2291
2819 2805 2721 2594 2658 2497*

23.1 22.4 18.8 13.2 16.0 9.0

11a 2063
2352 2356 2206* 2596 2414 2312

14.0 14.2 6.9 25.8 17.0 12.1

12a 2030
2147* 2186 2157 2348 2344 2272

5.8 7.7 6.3 15.7 15.5 11.9

13a 2257
2836 2811 2755 2643 2768 2514*

25.6 24.6 22.1 17.1 22.6 11.4

14a 2167
2351 2353 2277* 2553 2657 2471

8.5 8.6 5.1 17.8 22.6 14.0

15a 2165
2301 2385 2202* 2528 2661 2521

6.3 10.2 1.7 16.8 22.9 16.4

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

46

Instance UB CARL
MPGN-

multi-PPO
GNN-PPO NGO QLSA

NGO-

QLSA

16a 2255
2815 2861 2680 2661 2754 2510*

24.8 26.9 18.9 18.0 22.1 11.3

17a 2140
2392 2365 2309* 2648 2614 2408

11.8 10.5 7.9 23.7 22.2 12.5

18a 2127
2242 2363 2216* 2693 2564 2508

5.4 11.1 4.2 26.6 20.6 17.9

After a thorough comparative analysis, it is evident that our proposed algorithm demonstrates significant advantages

over the algorithms in 10 out of the 18 instances. This result strongly validates the superiority of our algorithm and its efficient

optimization capabilities in solving the FJSPs. When comparing NGO and QLSA in solving the FJSPs, NGO performed

better on these 18 instances, similar to the previous performance, indicating that global search played a significant role.

However, without local search, the solution quality was not as advantageous. Therefore, the combination of the NGO's global

search with QLSA's local search contributed to the superior performance of NGO-QLSA.

5.3.4 Barnes instance results and comparison

The 21 instances specifically constructed by Chambers and Barnes for the FJSP were used in this paper, and the 𝐶𝑚𝑎𝑥 was

recorded. Our results are compared against the UB from reference (Behnke D et al., 2012), the algorithm (MPGN-multi-PPO)

from reference (Lei et al., 2022), the algorithm (GNN-PPO) from reference (Yuan et al., 2024), NGO and QLSA. The out-

comes are displayed in Table 4.

Table 4. The results and comparison of Barnes's instances

Instance UB
MPGN-multi-

PPO
GNN-PPO NGO QLSA NGO-QLSA

mt10x 918
1176 1084 982 960 937*

28.1 18.1 7.0 4.6 2.1

mt10xx 918
1176 1084 982 940* 948

28.1 18.1 7.0 2.4 3.3

mt10xxx 918
1176 1084 1001 935 934*

28.1 18.1 9.0 1.9 1.7

mt10xy 905
1148 1055 973 967 936*

26.9 16.6 7.5 6.9 3.4

mt10xyz 847
1180 1020 923 921 873*

39.3 20.4 9.0 8.7 3.1

mt10c1 927
1240 1096 988 968 950*

33.8 18.2 6.6 4.4 2.5

mt10cc 910
1226 1068 961 945 919*

34.7 17.4 5.6 3.9 1.0

setb4x 925
1210 1022 1027 974 967*

30.8 10.5 11.0 5.3 4.5

setb4xx 925
1210 1015 991 973 941*

30.8 9.7 7.1 5.2 1.7

setb4xxx 925
1210 1040 1013 990 961*

30.8 12.4 9.5 7.0 3.9

setb4xy 916
1111 1019 993 963 946*

21.3 11.2 8.4 5.1 3.3

setb4xyz 905
1095 1000 964 981 935*
21.0 10.5 6.5 8.4 3.3

setb4c9 914
1225 1037 1000 990 978*
34.0 13.5 9.4 8.3 7.0

setb4cc 909 1180 993 991 951 944*

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

47

Instance UB
MPGN-multi-

PPO
GNN-PPO NGO QLSA NGO-QLSA

29.8 9.2 9.0 4.6 3.9

seti5x 1201
1592 1363 1310 1291 1273*
32.6 13.5 9.1 7.5 6.0

seti5xx 1199
1592 1344 1323 1303 1264*
32.8 12.1 10.3 8.7 5.4

seti5xxx 1197
1592 1340 1317 1310 1273*
33.0 12.0 10.0 9.4 6.4

seti5xy 1136
1438 1271 1273 1284 1204*
26.6 11.9 12.1 13.0 6.0

seti5xyz 1125
1298 1254 1244 1248 1182*
15.4 11.5 10.6 10.9 5.1

seti5c12 1174
1467 1346 1270 1273 1234*
25.0 14.7 8.2 8.4 5.1

seti5cc 1136
1438 1271 1257 1225 1198*
26.6 11.9 10.7 7.8 5.5

After a thorough comparative analysis, our proposed NGO-QLSA algorithm, when solving these 21 instances, demon-

strates a consistent gap between the obtained results and the known UB ranging from 1.0% to 7.0%, and it is evident that our

proposed algorithm demonstrates significant advantages over the algorithms in 20 out of the 21 instances. This significant

performance fully proves the remarkable optimization capability of the NGO-QLSA in addressing the FJSPs. When compar-

ing NGO and QLSA in solving the FJSPs, QLSA performed better on these 21 instances, which is different from the previous

observations, indicating that local search played a significant role. However, without a global search, the solution's effective-

ness was not optimal. Therefore, the combination of the NGO's global search with QLSA's local search contributed to the

superior performance of NGO-QLSA.

5.3.5 Fattahi instance results and comparison

The 20 randomly generated small-to-medium-sized FJSP instances introduced by Fattahi et al. have also been included in

our testing. Our results are compared against the UB from the reference (Behnke et al., 2012) and the algorithm from the

reference (Marzouki et al., 2017). Table 5 displays the outcomes.

Table 5. The results and comparison of Fattahi instances

Instance UB MACRO MACROG NGO QLSA
NGO-

QLSA

Fattahi1 66
66 66 66 66 66*

0 0 0 0 0

Fattahi2 107
107 107 107 107 107*

0 0 0 0 0

Fattahi3 221
221 221 221 221 221*

0 0 0 0 0

Fattahi4 355
355 355 355 355 355*

0 0 0 0 0

Fattahi5 119
119 119 119 119 119*

0 0 0 0 0

Fattahi6 320
320 320 320 320 320*

0 0 0 0 0

Fattahi7 397
397 397 397 397 397*

0 0 0 0 0

Fattahi8 253
253 253 253 263 253*

0 0 0 4.0 0

Fattahi9 210 210 210 210 220 210*

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

48

Instance UB MACRO MACROG NGO QLSA
NGO-

QLSA

0 0 0 4.8 0

Fattahi10 516
516 516 516 516 516*

0 0 0 0 0

Fattahi11 468
477 470 469 530 468*
1.9 0.4 0.2 13.3 0

Fattahi12 446
464 464 448 469 448*
4.0 4.0 0.5 5.2 0.4

Fattahi13 466
578 564 480* 498 505
24.0 21.0 3.0 6.9 8.4

Fattahi14 554
745 745 580 648 565*
34.5 34.5 4.7 17.0 2.0

Fattahi15 514
708 696 551 610 530*
37.7 35.4 7.2 18.7 3.1

Fattahi16 635
836 836 662 704 637*
31.7 31.7 4.3 10.9 0.3

Fattahi17 879
1465 1454 910 1104 890*
66.7 65.4 3.5 25.6 1.3

Fattahi18 884
1934 1934 962 1032 884*
119 119 8.8 16.7 0

Fattahi19 1088
2965 2953 1178 1257 1125*
173 171 8.3 15.5 3.4

Fattahi20 1267
5223 5223 1380 1486 1294*
312 312 8.9 17.3 2.1

After a comprehensive comparative analysis, it is clearly evident that the NGO-QLSA proposed in this paper exhibits

significant advantages in solving the FJSPs. This superiority not only lies in the algorithm's performance but also in its effi-

ciency and practicality, providing new insights and effective tools for the research and application of the FJSP. When com-

paring NGO and QLSA in solving the FJSPs, NGO performed better on these 20 instances, indicating that global search

played a significant role. However, without local search, the solution quality was not as advantageous. Therefore, the combi-

nation of the NGO's global search with QLSA's local search contributed to the superior performance of NGO-QLSA.

To demonstrate the effectiveness of our approach, we chose 07a (2478) from the Dauzère benchmarks mt10cc (919)

from the Barnes benchmarks to showcase in a Gantt chart. These selected instances exhibit notable optimization results, as

shown in Figure 7.

Figure 7. Gantt chart of 07a and mt10cc

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

49

6. CONCLUSION

Through in-depth research and experimental validation, this paper successfully proposes an NGO-QLSA hybrid algorithm

framework for solving the FJSPs. This algorithm framework combines the global search capability of NGOs with the local

search advantages of Q-learning and SARSA algorithms in reinforcement learning. Through carefully designed encoding

techniques, transition mechanisms, and reward functions, it achieves efficient solutions to the FJSPs.

Experimental results on multiple standard datasets show that compared to existing advanced algorithms. The NGO-

QLSA algorithm exhibits significant advantages and excellent performance in solving the FJSPs. To validate the importance

of NGO's global search and QLSA's local search within this framework, the paper also conducted an ablation study. Although

NGO and QLSA performed well when used individually, they were still not as effective as when integrated into the composite

framework. This achievement not only proves the effectiveness and practicability of the algorithm but also provides strong

support for the research and practical application of the FJSP.

The successful application of the NGO-QLSA demonstrates the potential and advantages of hybrid algorithm frame-

works in solving complex optimization problems and also provides new directions for future research on the FJSP. With the

increasing demand for efficient scheduling algorithms in the manufacturing industry, the NGO-QLSA is expected to be

widely applied in actual production, further enhancing production efficiency and management levels. At the same time, this

algorithm also provides new ideas and methods for solving other similar problems, possessing significant theoretical and

practical value.

REFERENCES

Behnke, D. and Geiger, M.J. (2012). Test instances for the flexible job shop scheduling problem with work centers. Ar-

beitspapier/Research Paper/Helmut-Schmidt-Universität, Lehrstuhl für Betriebswirtschaftslehre, insbes. Logistik-Manage-

ment.

Chen, R., Yang, B., Li, S. and Wang, S. (2020). A self-learning genetic algorithm based on reinforcement learning for flexible

job-shop scheduling problem. Computers & industrial engineering, 149, pp. 106778.

Chen, R., Wu, B., Wang, H., Tong, H. and Yan, F. (2024). A Q-Learning based NSGA-II for dynamic flexible job shop

scheduling with limited transportation resources. Swarm and Evolutionary Computation, 90, pp.101658.

Clifton, J. and Laber, E. (2020). Q-learning: Theory and applications. Annual Review of Statistics and Its Application, 7,

pp.279-301.

Dauzère-Pérès, S., Ding, J., Shen, L. and Tamssaouet, K. (2024). The flexible job shop scheduling problem: A review. Euro-

pean Journal of Operational Research, 314(2), pp.409-432.

Demir, Y. and İşleyen, S.K. (2014). An effective genetic algorithm for flexible job-shop scheduling with overlap** in oper-

ations. International Journal of Production Research, 52(13), pp.3905-3921.

Dehghani, M., Hubálovský, Š. and Trojovský, P. (2021). Northern goshawk optimization: a new swarm-based algorithm for

solving optimization problems. Ieee Access, 9, pp.162059-162080.

Du, Y., Li, J., Li, C. and Duan, P. (2022). A reinforcement learning approach for flexible job shop scheduling problem with

crane transportation and setup times. IEEE Transactions on Neural Networks and Learning Systems.

Fan, C., Wang, W., & Tian, J. (2024). Flexible job shop scheduling with stochastic machine breakdowns by an improved

tuna swarm optimization algorithm. Journal of Manufacturing Systems, 74, 180-197.

Fan, J., Zhang, C., Liu, Q., Shen, W. and Gao, L. (2022). An improved genetic algorithm for flexible job shop scheduling

problem considering reconfigurable machine tools with limited auxiliary modules. Journal of Manufacturing Systems, 62,

pp.650-667.

Jing, X., Yao, X., Liu, M. and Zhou, J. (2024). Multi-agent reinforcement learning based on graph convolutional network for

flexible job shop scheduling. Journal of Intelligent Manufacturing, 35(1), pp.75-93.

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

50

Kong, J., & Wang, Z. (2024). Research on Flexible Job Shop Scheduling Problem with Handling and Setup Time Based on

Improved Discrete Particle Swarm Algorithm. Applied Sciences, 14(6), 2586.

Lei, K., Guo, P., Zhao, W., Wang, Y., Qian, L., Meng, X. and Tang, L. (2022). A multi-action deep reinforcement learning

framework for flexible Job-shop scheduling problem. Expert Systems with Applications, 205, p.117796.

Lei, K., Guo, P., Wang, Y., Zhang, J., Meng, X. and Qian, L. (2023). Large-scale dynamic scheduling for flexible job-shop

with random arrivals of new jobs by hierarchical reinforcement learning. IEEE Transactions on Industrial Informatics.

Li, C., Zheng, P., Yin, Y., Wang, B. and Wang, L. (2023). Deep reinforcement learning in smart manufacturing: A review

and prospects. CIRP Journal of Manufacturing Science and Technology, 40, pp.75-101.

Long, X., Zhang, J., Qi, X., Xu, W., **, T. and Zhou, K. (2022). A self‐learning artificial bee colony algorithm based on

reinforcement learning for a flexible job‐shop scheduling problem. Concurrency and Computation: Practice and Experience,

34(4), p.e6658.

Marzouki, B., Driss, O.B. and Ghédira, K. (2017). Multi agent model based on chemical reaction optimization with greedy

algorithm for flexible job shop scheduling problem. Procedia Computer Science, 112, pp.81-90.

Mei, Z., Lu, Y., & Lv, L. (2024). Research on Multi-Objective Low-Carbon Flexible Job Shop Scheduling Based on Improved

NSGA-II. Machines, 12(9), 590.

Meng, L., Cheng, W., Zhang, B., Zou, W., Fang, W. and Duan, P. (2023). An improved genetic algorithm for solving the

multi-AGV flexible job shop scheduling problem. Sensors, 23(8), p.3815.

Öztürk, A. M., & Lee, C. (2022). CLUSTER-BASED PRIORITY LIST GENERATION FOR RESOURCE-CON-

STRAINED PROJECT SCHEDUL ING PROBLEMS. International Journal of Industrial Engineering, 29(2).

Saqlain, M., Ali, S. and Lee, J.Y. (2023). A Monte-Carlo tree search algorithm for the flexible job-shop scheduling in man-

ufacturing systems. Flexible Services and Manufacturing Journal, 35(2), pp.548-571.

Shahrabi, J., Adibi, M.A. and Mahootchi, M. (2017). A reinforcement learning approach to parameter estimation in dynamic

job shop scheduling. Computers & Industrial Engineering, 110, pp.75-82.

Shen, Y. (2022). Application of Improved Genetic Algorithm in FJSP. Academic Journal of Computing & Information Sci-

ence, 5(11), pp.1-9.

Song, W., Chen, X., Li, Q. and Cao, Z. (2022). Flexible job-shop scheduling via graph neural network and deep reinforcement

learning. IEEE Transactions on Industrial Informatics, 19(2), pp.1600-1610.

Wan, L., Cui, X., Zhao, H., Li, C. and Wang, Z. (2024). An effective deep actor-critic reinforcement learning method for

solving the flexible job shop scheduling problem. Neural Computing and Applications, pp.1-23.

Wan, L., Fu, L., Li, C. and Li, K. (2024). Flexible job shop scheduling via deep reinforcement learning with meta-path-based

heterogeneous graph neural network. Knowledge-Based Systems, p.111940.

Wang, R., Wang, G., Sun, J., Deng, F. and Chen, J. (2023). Flexible Job Shop Scheduling via Dual Attention Network-Based

Reinforcement Learning. IEEE Transactions on Neural Networks and Learning Systems.

Wang L. (2008). Particle Swarm optimization and scheduling algorithms[M]. Beijing: Tsinghua University Press,117-118.

Yuan, M., Huang, H., Li, Z., Zhang, C., Pei, F. and Gu, W. (2023). A multi-agent double Deep-Q-network based on state

machine and event stream for flexible job shop scheduling problem. Advanced Engineering Informatics, 58, p.102230.

Yuan, E., Wang, L., Cheng, S., Song, S., Fan, W. and Li, Y. (2024). Solving flexible job shop scheduling problems via deep

reinforcement learning. Expert Systems with Applications, 245, p.123019.

Shao et al. A Reinforcement Learning and Northern Goshawk Optimization Algorithm for Scheduling

51

Yuan, Y., Xu, H. and Yang, J. (2013). A hybrid harmony search algorithm for the flexible job shop scheduling problem.

Applied soft computing, 13(7), pp.3259-3272.

Zeng, Z., Li, X. and Bai, C. (2022). A deep reinforcement learning approach to flexible job shop scheduling. In 2022 IEEE

International Conference on Systems, Man, and Cybernetics (SMC) (pp. 884-890). IEEE.

Zhao, D., Wang, H., Shao, K. and Zhu, Y. (2016). Deep reinforcement learning with experience replay based on SARSA. In

2016 IEEE symposium series on computational intelligence (SSCI) (pp. 1-6). IEEE.

Zhou, K., Tan, C., Zhao, Y., Yu, J., Zhang, Z., & Wu, Y. (2024). Research on solving flexible job shop scheduling problem

based on improved GWO algorithm SS-GWO. Neural Processing Letters, 56(1), 26.

Zhang, W., Zhao, F., Li, Y., Du, C., Feng, X. and Mei, X. (2024). A novel collaborative agent reinforcement learning frame-

work based on an attention mechanism and disjunctive graph embedding for flexible job shop scheduling problem. Journal

of Manufacturing Systems, 74, pp.329-345.

Ziaee, M. (2014). A heuristic algorithm for solving flexible job shop scheduling problem. The International Journal of Ad-

vanced Manufacturing Technology, 71, pp.519-528.

