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The rapid growth of the semiconductor industry has led to high water and energy consumption and substantial greenhouse 

gas emissions. Achieving sustainability in the semiconductor industry has become an exceedingly important issue. This paper 

investigates a complex batch processing scheduling problem in the final testing phase of semiconductor manufacturing, where 

chambers and chips are modeled as batch processing machines and jobs. Machines can process multiple jobs simultaneously, 

with each job defined by its processing time, release time, and size. A mixed-integer linear programming model is presented, 

along with a constructive-based metaheuristic, the ACS-PBPMs algorithm, to optimize batch formation and scheduling 

decisions jointly. The algorithm uses an effective candidate list strategy to address constraints and incorporates a local search 

phase based on solution characteristics. Experimental results on diverse problem instances show that the ACS-PBPMs 

algorithm outperforms CPLEX and competitive algorithms in computational efficiency and solution quality. 
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1. INTRODUCTION 
 

The semiconductor industry is a cornerstone of modern technology, driving technological innovations across critical sectors. 

Its importance extends beyond economic impact to strategic relevance, enabling core technologies such as artificial 

intelligence, 5G communications, and the Internet of Things (IoT), which are fundamental to advancements in smart cities 

and automation (Rodrigues et al., 2022). However, the rapid growth of this industry has led to significant challenges, 

including high water and energy consumption and considerable greenhouse gas emissions (Wang et al., 2023). Efficient 

scheduling methods are essential to mitigate bottlenecks and enhance operational efficiency in semiconductor manufacturing. 

The semiconductor manufacturing process is divided into four main stages: wafer fabrication, probing, assembly, and 

final testing, each characterized by diverse processing times. Some operations may be completed within 15 minutes, while 

others require over 12 hours. Batch processing is particularly common, often involving extended operation times that create 

bottlenecks at non-batching machines, leading to a non-linear flow of products through the factory. As a result, effective 

batch processing is crucial for improving overall production efficiency (Wu et al., 2023; Zhou et al., 2021). 

One prominent example of batch processing in semiconductor manufacturing is the testing of chips in burn-in ovens 

during the final testing phase. These ovens, which can handle multiple chips at the same time as long as their combined size 

does not exceed the oven's capacity, are considered Batch Processing Machines (BPMs). Similar scheduling challenges occur 

in other manufacturing steps, such as processes that involve heating, coating, or material changes. 

Given the critical role of batch processing in semiconductor manufacturing, the effective scheduling of BPMs under 

dynamic and heterogeneous conditions has emerged as a key challenge for achieving sustainable and efficient production 
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systems. Based on the sequencing methods of jobs within a batch, there are three types of batch processing problems (Beldar 

et al., 2024). In the semiconductor manufacturing industry, p-batch is more important and commonly used. This paper focuses 

on investigating a significant p-batch-based batch processing problem within the context of semiconductor manufacturing. A 

critical aspect of batch processing problems is managing non-identical job sizes within a given machine capacity, which limits 

the total job size to not exceed the machine's maximum capacity. Batch processing problems become more complex when 

considering parallel machines, especially when those jobs arrive dynamically, meaning they have varying release times and 

sizes. For example, in semiconductor manufacturing, some jobs may be delayed due to material shortages or machine 

maintenance, leading to dynamic arrival times that complicate scheduling decisions. 

Ant colony optimization (ACO) algorithms have been proven effective for various scheduling and routing problems, 

often outperforming traditional heuristic approaches such as simulated annealing (SA) and genetic algorithms (GA) in terms 

of solution quality and robustness (Nguyen and Sheen, 2023). However, unlike SA and GA, which primarily focus on 

exploring solution spaces globally, ACO offers a construction-based framework that is particularly suitable for integrating 

batch formation and sequencing decisions. Furthermore, as a population-based metaheuristic algorithm, ACO also has better 

adaptability than individual-based metaheuristic algorithms since it can maintain solution diversity during the evolutionary 

process and is not sensitive to the initial solution. However, directly using the ACO algorithm to generate an integrated 

solution containing both batch formation and batch sequencing for complex environments is difficult due to the interrelated 

nature of these two decisions, as well as dynamic arrivals and varying job size constraints. Therefore, it is necessary to 

effectively integrate both decisions during solution construction while balancing machine utilization and job waiting times to 

address these challenges. 

The main contributions are summarized as follows.  

(1) We established a mixed integer linear programming model (MILP) for the parallel batch processing problem arising 

from semiconductor manufacturing. 

(2) We developed a hybrid ant colony optimization (ACO) algorithm that incorporates characteristics of candidate lists 

and local search to guide the search and enhance performance. 

(3) We verified the performance of the proposed algorithm using CPLEX and benchmark algorithms, demonstrating 

superior performance, especially in large search spaces. 

The remainder of this paper is structured as follows: Section 2 provides a brief review of existing work related to the 

problem. In Section 3, the mathematical model and a constructive heuristic for the problem are defined. Section 4 introduces 

the proposed ACO approach, incorporating local search and a candidate list strategy based on problem-specific constraints. 

Section 5 evaluates and compares the performance of the proposed approaches with CPLEX and other benchmark algorithms. 

Finally, Section 6 concludes the paper. 

 
2. LITERATURE REVIEW 
 

In past research, the BPM scheduling problem has attracted widespread research interest. Most of these studies revolve around 

single-machine problems and parallel-machine problems, focusing on minimizing job times and using homogeneous 

machines. Our literature review focuses on single-machine and parallel-machine cases, with a focus on features such as non-

identical job sizes and dynamic job arrivals. 

In the beginning, researchers started with the simplest model scheduling for a single BPM with limited constraints (Lee 

et al., 1992; Uzsoy, 1994; Uzsoy and Yang, 1997). To prevent the system from being blocked due to the unavailability of a 

single BPM, most studies have extended the BPM problem to parallel machine environments. Chang et al. (2004) proposed 

a simulated annealing (SA) algorithm for minimizing makespan, 𝐶𝑚𝑎𝑥, on PBPMs with non-identical job sizes and compared 

the results with CPLEX software. Zhang et al. (2022a) study a single-batch-processing machine (SBPM) scheduling problem 

by considering a just-in-time criterion and modeling this scheduling problem using a mixed-integer linear model. Nguyen 

and Sheen (2023) consider a parallel batch processing problem to minimize the makespan under constraints of arbitrary lot 

sizes, start time windows and incompatible families. Gahm et al. (2022) dealt with parallel serial-batch processing machine 

scheduling by a mixed-integer program and several tailor-made construction heuristics. Park et al. (2024) demonstrate the 

utilization of the Stochastic Utility Evaluation (SUE) function approach to the performance of batch process systems using 

multiple criteria. Wang et al. (2024) consider EFFSP with BPM at a middle stage in the hot & cold casting process, and a 

feedback-based artificial bee colony (FABC) algorithm is proposed to simultaneously minimize the makespan, total tardiness, 

and total energy consumption. Muter (2020) tackles both single and parallel batch processing machine scheduling problems 

and proposes the first exact algorithm based on two-level decomposition for parallel machine problems using and column-

and-cut generation algorithm. Zhang et al. (2022) and Zhou et al. (2022) both studied parallel batch processing in last-mile 

logistics considering two-dimensional rectangular packing constraints. 
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In the real world of semiconductor manufacturing, several characteristics, such as non-identical job size and arrival time, 

are common and have been considered in the recent literature. Uzsoy (1994) was the first to present complexity results for 

𝐶𝑚𝑎𝑥 criteria. He also provided several heuristics and a branch-and-bound algorithm. Jia et al. (2019) studied the problem 

of scheduling on parallel batch processing machines with non-identical sizes and fuzzy processing times to minimize the 

makespan. And after constructing a mathematical model of the problem, we propose a fuzzy ant colony optimization (FACO) 

algorithm. Bektur (2022) considers machine factory-dependent setup times, non-identical factories, position-based learning 

effects on processing times and setup times, and factory eligibility constraints for the DFSS problem. Xiao et al. (2024) 

investigate an unrelated parallel batch processing machine scheduling problem. A set of jobs with non-identical sizes and 

arbitrary ready times are scheduled on unrelated parallel batch processing machines with different capacities to minimize the 

makespan. Zhou et al. (2020) consider energy-efficient scheduling of a single batch processing machine with non-identical 

job sizes and release times under a time-of-use (TOU) electric tariff, a pricing scheme where electricity costs vary based on 

the time of consumption, aiming to simultaneously minimize total electricity cost (a criterion of environmental and energy 

sustainability) and makespan (a criterion of productivity). 

Recently, Fowler and Mönch (2022) surveyed the literature on PBPMs with compatible settings and incompatible family 

settings, considered makespan, flow time, and due date-related measures, and discussed scheduling approaches for single 

machines, parallel machines, and other environments such as flow shops and job shops. Durasevic and Jakobovic (2023) 

provide a comprehensive literature review on the application of heuristic and metaheuristic methods to solve UPMSP. Despite 

the extensive research on BPM scheduling problems, the challenges posed by varying job release times and heterogeneous 

job sizes remain insufficiently addressed, especially in the context of PBPMs. Furthermore, limited attention has been paid 

to integrating batch formation and sequencing decisions, which are critical for achieving optimal solutions in real-world 

scenarios. 

 

3. PROBLEM DESCRIPTION AND HEURISTIC 
 
3.1 Problem description 

 

A summary of the notations used in the problem description and mathematical formulation is provided in Table 1. Each 

variable and parameter are explicitly defined to ensure clarity and to facilitate understanding of the model. 

 

Table 1. List of parameters and variables 

 

Indices 

𝑗 Job index, where 𝑗 ∈ { 1,2, . . . , 𝑛} 

 𝑏  Batch index, where 𝑏 ∈ {1,2, . . . , 𝑛} 

 𝑚  Machine index, where 𝑚 ∈ {1,2, . . . , 𝑘} 

Parameters 

𝐵 Maximum capacity of a machine 𝑚 

 𝑝𝑗 Processing time of job 𝑗  

𝑟𝑗 Release time of job 𝑗 

 𝑠𝑗 Size of job 𝑗 

Variables 

𝑥𝑗𝑏𝑚 Binary variable: 1 if job 𝑗 is assigned to batch 𝑏 and scheduled on machine 𝑚, 0 otherwise. 

𝑅𝑏𝑚 Release time of batch 𝑏 scheduled on machine 𝑚 

𝑆𝑏𝑚 Starting time of batch 𝑏 scheduled on machine 𝑚 

𝑃𝑏𝑚 
Processing time of batch 𝑏 scheduled on machine 𝑚, determined by the longest processing time among jobs in 

the batch. 

𝐶𝑏𝑚 Completion time of batch 𝑏 scheduled on machine 𝑚 

 

The scheduling challenge involving multiple identical PBPMs, characterized by non-identical job sizes and job arrivals, 

aims to minimize makespan. This batch-processing problem is formally denoted as 𝑃𝑚|𝑟𝑖 , 𝑠𝑖 , 𝑝-𝑏𝑎𝑡𝑐ℎ|𝐶𝑚𝑎𝑥. We have 𝑛 jobs 

that need to be allocated into several batches and scheduled across 𝑚 identical PBPMs. Each job 𝑖 is defined by its release 

time 𝑟𝑗, processing time 𝑝𝑗 and size 𝑠𝑗. We operate under the assumption that estimates for the processing times, sizes, and 

arrival times of the jobs are available and known in advance based on deterministic data. In practice, these estimates can be 

derived from engineering data and real-time tracking through Shop Floor Information Systems that monitor Work in Process 
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inventory and machine statuses. When multiple jobs are selected for batch processing, the time required for the batch is 

determined by the longest processing time among the jobs included. Additionally, the cumulative size of all jobs within a 

batch must not exceed the processing capacity of the machine handling it. 

 

3.2 Model Formulation  
 

Given the aforementioned assumptions and variables, we develop the following mixed integer linear programming (MILP) 

model for the scheduling problem as follows. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝐶𝑚𝑎𝑥  (1) 

 

𝑠. 𝑡. ∑ ∑ 𝑥𝑗𝑏𝑚
𝑛
𝑏=1

𝑘
𝑚=1 = 1, 𝑗 = 1, … , 𝑛  (2) 

 

∑ 𝑠𝑗𝑥𝑗𝑏𝑚
𝑛

𝑗=1
≤ 𝐵, 𝑏 = 1, … , 𝑛; 𝑚 = 1, … , 𝑘  (3) 

 

𝑃𝑏𝑚 ≥ 𝑝𝑗𝑥𝑗𝑏𝑚, 𝑗 = 1, … , 𝑛; 𝑏 = 1, … , 𝑛; 𝑚 = 1, … , 𝑘  (4) 

 

𝑆𝑏𝑚 ≥ 𝑟𝑗𝑥𝑗𝑏𝑚, 𝑗 = 1, … , 𝑛; 𝑏 = 1, … , 𝑛; 𝑚 = 1, … , 𝑘 (5) 

 

𝑆𝑏𝑚 ≥ 𝑆(𝑏−1)𝑚 + 𝑃(𝑏−1)𝑚, 𝑏 = 2, … , 𝑛; 𝑚 = 1, … , 𝑘 (6) 

 

𝐶𝑏𝑚 ≥ 𝑆𝑏𝑚 + 𝑃𝑏𝑚, 𝑏 = 1, … , 𝑛; 𝑚 = 1, … , 𝑘 (7) 

 

𝐶𝑏𝑚 ≥ 0, 𝑏 = 1, … , 𝑛; 𝑚 = 1, … , 𝑘 (8) 

 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑏𝑚, 𝑏 = 1, … , 𝑛; 𝑚 = 1, … , 𝑘 (9) 

 

𝑥𝑗𝑏𝑚 ∈ {0,1}, 𝑗 = 1, … , 𝑛; 𝑏 = 1, … , 𝑛; 𝑚 = 1, … , 𝑘 (10) 

 

Equation (1) defines the objective function aimed at minimizing the makespan. Equation (2) ensures that each job is 

assigned to exactly one batch on a given parallel machine. Equation (3) establishes that the total size of all jobs within each 

batch processed on a machine does not exceed its capacity. Equation (4) calculates the processing time for batch 𝑏 on 

machine 𝑚, determined by the longest processing time of the jobs included in the batch. Equations (5) and (6) specify the 

starting time of batch 𝑏 on machine 𝑚, which is based on either the release time of the job with the latest release time in 

the batch or the completion time of the preceding batch. Equations (7) and (8) compute the completion time of batch 𝑏 on 

machine 𝑚, which is the sum of the starting time and the processing time. Equation (9) identifies the objective, represented 

as the maximum completion time across all batches. Finally, Equation (10) outlines the decision variable. Since the number 

of batches processed on a machine is not predetermined prior to reaching a final solution, it is initially set to equal 𝑛, with 

the processing time for batch 𝑏 designated as zero if the batch is empty. 

 

3.3 Heuristic algorithm 

 

As previously mentioned, addressing the target problem requires making two crucial decisions: batch formation and batch 

sequencing. In this paper, we develop two constructive heuristics called the Batch Earliest (BE) heuristic and the Free 

Machine First-Waste and Idle Space (FMF-WIS) heuristic for the problem. The Batch Earliest (BE) heuristic generates a 

solution by applying two separate dispatching rules. First, it uses the BFLPT rule for batch formation, then schedules the 

formed batches onto machines using the ERT-LPT rule, treating batch formation and scheduling as independent steps. In 

contrast, the Free Machine First-Waste and Idle Space (FMF-WIS) heuristic integrates these decisions within a single process. 

It begins by selecting the first available machine and dynamically forming batches based on the current context. Once a batch 

is formed, it is immediately assigned, and its processing sequence is established, ensuring an interactive and iterative approach 

that continues until all jobs are batched and scheduled efficiently.  
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Batch scheduling for parallel machines involves balancing multiple dimensions, such as job sizes, release times, and 

processing times. Selecting an appropriate heuristic to guide batch formation is critical to achieving efficient schedules. The 

FMF-WIS heuristic was selected because it captures both machine capacity and scheduling constraints in a single metric 

Waste and Idle Space (WIS), making it particularly suited to the dynamic and multi-dimensional nature of PBPM scheduling 

problems. 

Thus, our goal is to group jobs in a way that reduces WIS as much as possible during batch formation. Specifically, a 

candidate job 𝑢 reducing the most value of 𝑊𝐼𝑆(𝜋𝑚) on machine 𝑚 of schedule 𝜋 will be a better choice. The reduced 

value 𝛬𝑊𝐼𝑆(𝜋𝑚
𝑢 ) after assigning job 𝑢 can be obtained by Equation (11). 

 

𝛬𝑊𝐼𝑆(𝜋𝑚
𝑢 ) = 𝑠𝑢 ⋅ 𝑝𝑢 − 𝐵 ⋅ (𝐶𝑚′ − 𝐶𝑚) (11) 

 

where 𝐶𝑚′ denote the new value of 𝐶𝑚  after job 𝑢 has been assigned into the current schedule 𝜋𝑚. 

The detailed FMF-WIS algorithm is outlined as follows: 

Step 1: Select a free machine 𝑚 (ties are broken arbitrarily when multiple machines are free) and create an empty batch 

𝑏 on this machine. 

Step 2: Compile jobs with release times less than or equal to the machine's ready time into a candidate set, referred to 

as 𝑆. If set 𝑆 is empty, assign the earliest job to batch 𝑏. If 𝑆 is not empty, assign the job with the longest processing time 

from set 𝑆 to batch 𝑏.  

Step 3: Calculate the 𝛬𝑊𝐼𝑆(𝜋𝑚
𝑢 ) value and index the jobs in non-increasing order of their 𝛬𝑊𝐼𝑆(𝜋𝑚

𝑢 ). Assign the first 

job that satisfies the machine capacity constraint to the current batch 𝑏. Repeat this step until no more jobs can fit in the 

current batch. 

Step 4: Continue to repeat the above steps until all jobs have been assigned to batches on machines. 

To demonstrate how to obtain a feasible solution using the BE and FMF-WIS heuristics, we present a 10-job problem 

instance (see Table 2) with two machines, each having a capacity of 10. Tables 3 and 4 illustrate the progression of the BE 

heuristic in obtaining a feasible solution for this example, while Table 5 shows the evolution of the FMF-WIS heuristic. 

Column Unassigned Jobs contains all unscheduled jobs at the beginning of each iteration. Column Candidate Jobs presents 

the candidate jobs of the current open batch b for FMF-WIS. Column 𝑏 presents the index of the current batch for each 

iteration. Column 𝐽 presents the job set assigned in the batch 𝑏. Columns 𝑃𝑏𝑚  and 𝑅𝑏𝑚  present the processing time and 

release time of each batch. Column 𝑅𝐶𝑏𝑚 presents the residual capacity of the batch 𝑏 after job set 𝐽 is located. Column 

𝑀 presents the machine where the batch 𝑏 is located. Columns 𝐶𝑚𝑎𝑥 (𝑀1) and 𝐶𝑚𝑎𝑥 (𝑀2) present when each machine 

will become available to process the next batch, which is the completion time of the current batch 𝑏. 

 

Table 2. Data for 10-job of problem instance 

 

𝑗 1 2 3 4 5 6 7 8 9 10 

𝑝𝑗 9 3 4 1 9 5 4 2 3 6 

𝑟𝑗 8 1 15 8 7 14 9 1 1 12 

𝑠𝑗 2 1 4 4 2 7 2 7 6 1 

 

Table 3. Evolution of the BE heuristic (the first BFLPT rule) 

 

Unassigned Jobs 𝑏 𝐽 𝑃𝑏𝑚 𝑅𝑏𝑚 𝑅𝐶𝑏𝑚 
1,2,3,4,5,6,7,8,9,10 1 1 9 8 8 

2,3,4,5,6,7,8,9,10 1 1,5 9 8 6 

2,3,4,6,7,8,9,10 1 1,5,10 9 12 5 

2,3,4,6,7,8,9 2 6 5 14 3 

2,3,4,7,8,9 1 1,5,10,3 9 15 1 

2,4,7,8,9 2 6,7 5 14 1 

2,4,8,9 1 1,5,10,3,2 9 15 0 

4,8,9 3 9 3 1 4 

4,8 3 9,4 3 8 0 

8 4 8 2 1 3 
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Table 4. Evolution of the BE heuristic (the second ERT-LPT rule) 

 

𝑏 𝑀 𝐶𝑚𝑎𝑥(𝑀1) 𝐶𝑚𝑎𝑥(𝑀2) 

4 1 3 0 

3 2 3 11 

2 1 19 11 

1 2 19 24 

 

Table 5. Evolution of the FMF-WIS heuristic 

 

Unassigned Jobs Candidate Jobs 𝑏 𝐽 𝑃𝑏𝑚 𝑅𝑏𝑚 𝑅𝐶𝑏𝑚 𝑀 𝐶𝑚𝑎𝑥(𝑀1) 𝐶𝑚𝑎𝑥(𝑀2) 

1,2,3,4,5,6,7,8,9,10 2,8,9 1 2 3 1 9 1 4 0 

1,3,4,5,6,7,8,9,10 8,9 1 2,9 3 1 3 1 4 0 

1,3,4,5,6,7,8,10 8 2 8 2 1 3 2 4 3 

1,3,4,5,6,7,10 5 3 5 9 7 8 2 4 16 

1,3,4,6,7,10 1,4,7,10 3 5,1 9 8 6 2 4 17 

3,4,6,7,10 4,7,10 3 5,1,4 9 8 2 2 4 17 

3,6,7,10 7,10 3 5,1,4,7 9 9 0 2 4 18 

3,6,10 10 4 10 6 12 9 1 18 18 

3,6 3,6 4 10,6 6 14 2 1 20 18 

3 3 5 3 4 15 6 2 20 22 

 

In contrast, the FMF-WIS heuristic constructs a final solution directly, eliminating the need for supplementary rules. It 

integrates both decisions in a sequential and interactive manner, allowing for a more cohesive approach to scheduling. 

In the example, the optimal solution obtained by CPLEX is 21. The figures show that the BE heuristic yields a solution 

comprising four batches, resulting in an objective completion time 𝐶𝑚𝑎𝑥  of 24. In contrast, the FMF-WIS heuristic 

constructs a solution with five batches, achieving a 𝐶𝑚𝑎𝑥 of 22, which is closer to the optimal solution. This improvement 

over BE can be attributed to FMF-WIS's ability to effectively share information during the decision-making process. 

Additionally, WIS serves as a reliable indicator, incorporating all three key factors mentioned earlier. 

 

4. SOLUTION APPROACH 
 
The ACO framework is a novel nature-inspired metaheuristic introduced by Marco Dorigo in the early 1990s and has gained 

immense popularity in recent years (Liu et al., 2022; Saemi et al., 2022). For a more comprehensive review of ACO 

applications, please refer to the works of Saber et al. (2023a) and Blum (2024).  

Since ACO is a construction-based metaheuristic, it not only provides the constructive advantages of FMF-WIS but also 

addresses its myopic limitations. In this paper, we adopt the ACS framework, which is recognized as one of the most effective 

and widely used variations (Blum, 2024). To enhance the effectiveness and efficiency of the proposed ACS algorithm 

(referred to as ACS-PBPMs) for the specific problem at hand, we incorporate two distinctive features based on problem-

specific knowledge: 

1. We have developed an efficient candidate list strategy that considers two critical constraints: machine capacity and 

release time. This strategy directs the search toward promising areas within the solution space, effectively balancing 

increased machine utilization with reduced job waiting times. 

2. A local search procedure is designed based on the characteristics of the solution and is executed after an ant has 

completed its solution construction. This enhancement significantly boosts the algorithm's performance. The rationale 

for this improvement lies in the generally weak local search capability of ACS; hence, incorporating a local search 

feature is beneficial within the algorithm's framework. 
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4.1 Initialization 

 
In the case of our problem, we define 𝜏𝑢,𝑗 as the pheromone trail, which represents the desirability of having job u and j in 

the same batch, which is fixed during the construction process. However, it could not be utilized directly since the number of 

jobs in a batch is uncertain until the batch is full or no space is available. Thus, we define a variable 𝜏𝑏𝑚
𝑢 = ∑ 𝜏𝑢,𝑗𝑗∈𝑏𝑚

|𝑏𝑚|⁄ . 

It is the average value of pheromone trail 𝜏𝑢,𝑗, where 𝑗 denotes the one that has been assigned into the current batch 𝑏 of 

machine 𝑚 and job 𝑢 is a candidate job. If 𝑏𝑚 is empty, the variable 𝜏𝑏𝑚
𝑢  which refers to the desirability of assigning 

job 𝑢 into the current batch 𝑏 on machine 𝑚 is set to one. 

As mentioned earlier, selecting a job that reduces the value of WIS the most during batch formation is optimal. 

Specifically, the next job chosen should preferably have a larger value of 𝛬𝑊𝐼𝑆(𝜋𝑚
𝑢 ). Accordingly, the heuristic information 

used in this process is calculated as follows, 

 

𝜂𝑏𝑚
𝑢 = {

𝑠𝑢 ⋅ 𝑝𝑢 − 𝐵 ⋅ (𝐶𝑚′ − 𝐶𝑚) if 𝛬𝑊𝐼𝑆(𝜋𝑚
𝑢 ) > 0

1

1+|𝑠𝑢⋅𝑝𝑢−𝐵⋅(𝐶𝑚′−𝐶𝑚)|
                 otherwise

  (12) 

 

which means the variable 𝜂𝑏𝑚
𝑢  is directly proportional to 𝛬𝑊𝐼𝑆(𝜋𝑚

𝑢 ). We add one to the denominator to prevent division by 

zero for the case that 𝛬𝑊𝐼𝑆(𝜋𝑚
𝑢 ) is a non-positive value. 

 

4.2 Candidate list strategy 

 
The candidate list strategy is a key component of our ACS-PBPMs algorithm, designed to guide the decision-making process 

when forming batches. A candidate list is a set of jobs that are eligible to be added to the current batch based on two primary 

factors: 

1) Machine Capacity: The total size of jobs in a batch cannot exceed the machine's capacity. Only jobs that fit within 

the remaining capacity of the batch are considered. 

2) Job Release Time: Jobs must be available for processing at the time the batch starts. This ensures that no 

unnecessary delays are introduced while waiting for jobs to arrive. 

The candidate list helps prioritize jobs that meet these two criteria, ensuring that the batch formation process is both 

efficient and compliant with the problem's constraints. For example, if a machine has limited capacity, the strategy will only 

consider smaller jobs that can fit within that limit. Similarly, if a job is not yet ready for processing, it will not be included in 

the candidate list. 

For example, as illustrated in Figure 1, consider a machine with a capacity 𝐵 =  2 and unit job sizes. After assigning 

job 𝐽1 to the first batch, a decision must be made on whether to wait for the incoming jobs 𝐽2, 𝐽3, and 𝐽4. If a non-delay 

candidate condition is applied, job 𝐽1 will be processed immediately, resulting in the best solution depicted in Solution 1. 

To enhance machine utilization and form a larger batch, alternative solutions explore different scenarios of waiting for 𝐽2, 

𝐽4, and 𝐽3, respectively. As demonstrated, waiting for incoming jobs can lead to suboptimal outcomes (e.g., Solution 3), but 

it may also yield improved solutions (e.g., Solution 4). Therefore, it is essential to establish candidate conditions that help 

determine which jobs are worth waiting for. 

Theorem: Let 𝑏 be the last non-empty batch on machine 𝑚 and 𝑢 be an unassigned job whose size does not exceed 

the residual capacity of the batch. If the releasing time of job 𝑢 satisfies the condition 𝑟𝑢 < 𝑆𝑏𝑚 + 𝑚𝑖𝑛{𝑝𝑢, 𝑃𝑏𝑚}, then the 

objective value of assigning job 𝑢 into batch 𝑏 is equal to or greater than the value processing job u after batch 𝑏. 

Proof: We will prove this by contradiction. We consider two scenarios: assigning job 𝑢 into batch 𝑏 versus processing 

job 𝑢 after batch 𝑏. 

Case 1: if job 𝑢 is assigned to batch 𝑏, the resulting objective value is: 𝐶𝑚𝑎𝑥1 =  𝑟𝑢 + max{𝑝𝑢, 𝑃𝑏𝑚}. 

Case 2: if job 𝑢 is processed after batch 𝑏, the resulting objective value is: 𝐶𝑚𝑎𝑥2 = 𝑆𝑏𝑚 + 𝑝𝑢 + 𝑃𝑏𝑚. 

Next, we analyze 𝐶𝑚𝑎𝑥1  based on the relationship between 𝑝𝑢  and 𝑃𝑏𝑚 . If 𝑝𝑢 ≥ 𝑃𝑏𝑚 , then 𝐶𝑚𝑎𝑥1 = 𝑟𝑢 + 𝑝𝑢 . 

Suppose 𝐶𝑚𝑎𝑥1 ≥  𝐶𝑚𝑎𝑥2  it requires 𝑟𝑢 − 𝑆𝑏𝑚 ≥ 𝑃𝑏𝑚 , which is contradictory to the given condition 𝑟𝑢 < 𝑆𝑏𝑚 +
𝑚𝑖𝑛{𝑝𝑢, 𝑃𝑏𝑚}. Otherwise, 𝐶𝑚𝑎𝑥1 = 𝑟𝑢 + 𝑃𝑏𝑚 if f 𝑝𝑢 < 𝑃𝑏𝑚. Suppose  𝐶𝑚𝑎𝑥1 ≥  𝐶𝑚𝑎𝑥2, it needs 𝑟𝑢 − 𝑆𝑏𝑚 ≥ 𝑃𝑏𝑚, which 

is contradictory either. 
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Figure 1. An example to illustrate the performance of four solutions with different candidate strategies 

 

Solution 1 presents the result using the non-delay candidate strategy, and the other solutions denote the different cases 

assigning the incoming jobs (𝐽2, 𝐽4, 𝐽3) and 𝐽1 in one batch, respectively. Solution 4 achieves the best performance among 

all cases. 

From the theorem, we can deduce that if the delay time of batch 𝑏 is less than the minimum processing time between 

job 𝑢 and batch 𝑏, it is advantageous to postpone processing batch 𝑏 until job 𝑢 arrives, allowing them to be combined 

into a single batch. For instance, as illustrated in Figure 1, job 𝐽3 is the only one that meets the candidate condition, and the 

objective value achieved in Solution 4, where 𝐽3 and 𝐽1 are assigned together in one batch, is the optimal among all 

solutions. 

Based on the consideration, we propose the candidate list 𝜃 used in the ACS-PBPMs algorithm. 

 

𝜃 = {𝑢|𝑠𝑢 ≤ (𝐵 − ∑ 𝑠𝑗𝑗∈𝑏𝑚
) and 𝑟𝑢 ≤ 𝑆𝑏𝑚 + 𝑚𝑖𝑛{𝑝𝑢, 𝑃𝑏𝑚}} (13) 

 

This candidate list 𝜃 effectively balances reducing machine idle time with enhancing machine utilization. However, 

since the assignment process is continuous, it is not feasible to rely solely on current information to make optimal decisions 

with this candidate strategy. Therefore, we also implement a local search procedure to further enhance performance once a 

feasible solution has been established. 

 

4.3 Solution construction and pheromone updating 

 
The ACS-PBPMs employ a construction-based metaheuristic approach, similar to the solution construction policy utilized in 

the FMF-WIS heuristic. The specifics of this process are illustrated in Figure 2. The pseudo-random proportional rule for 

selecting the next job from the candidate list is defined as follows, 

 

𝑢 = {
arg 𝑚𝑎𝑥

𝑢∈𝛩
[𝜏𝑏𝑚

𝑢 ] ⋅ [𝜂𝑏𝑚
𝑢 ]𝛽             if 𝑞 ≤ 𝑞0

�̂�                                            otherwise
  (14) 

 

where 𝑞0  is a parameter in ACS-PBPMs that represents the probability of selecting job 𝑢  with the largest combined 

pheromone trail and heuristic value. 𝑞 is a random variable uniformly distributed in [0, 1]. The variable �̂� can be calculated 

as follows. 
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�̂� = {

[𝜏𝑏𝑚
𝑢 ] ⋅ [𝜂𝑏𝑚

𝑢 ]𝛽

∑ ([𝜏𝑏𝑚
𝑢 ] ⋅ [𝜂𝑏𝑚

𝑢 ]𝛽)
𝑢∈𝛩

           if 𝑢 ∈ 𝜃

0                                        otherwise

 (15) 

 

In ACS-PBPMs, pheromone trails are updated through two distinct processes, each occurring at different phases. The 

global updating rule applies only to the best-so-far solution at the conclusion of each iteration. Given the nature of batch 

processing machines (BPM), where multiple jobs may be grouped together in feasible solutions, the value of 𝜏𝑢,𝑗  is 

reinforced when jobs 𝑢 and 𝑗 are assigned to the same batch, according to the following equation, 

 

𝜏𝑢,𝑗 = (1 − 𝜌) ⋅ 𝜏𝑢,𝑗 + ℎ𝑢,𝑗 ⋅ 𝜌 ⋅ 𝛬𝜏𝑢,𝑗 (16) 

 

where 𝜌 ∈ (0,1) is a parameter that adjusts the pheromone evaporation rate. 𝛬𝜏𝑢,𝑗  represents the amount of pheromone 

deposited based on the quality of the best-so-far solution. 

 

𝛬𝜏𝑢,𝑗 = {
1

𝐶𝑚𝑎𝑥
      if jobs 𝑖 and 𝑗 are assigned in the same batch

0                                                             otherwise
  (17) 

 

 

 

Figure 2. Flow chart of the solution construction process 

 

The local updating rule is applied at each step of the construction process, following the formulation that incorporates 

the initial pheromone value 𝜏0. 
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𝜏𝑢,𝑗 = (1 − 𝜌) ⋅ 𝜏𝑢,𝑗 + 𝜌 ⋅ 𝜏0 (18) 

 

4.4 Local search procedure for batch processing 

 

The objective 𝐶𝑚𝑎𝑥 of the target problem depends heavily on the last batch 𝑏 processed on machine 𝑚. This is because its 

completion time has a direct impact on the overall objective value. The completion time of batch 𝑏 can be represented as 

𝐶𝑏𝑚 = 𝑆𝑏𝑚 + 𝑃𝑏𝑚. 

To minimize 𝐶𝑏𝑚, we can target two components: reducing the batch size 𝑆𝑏𝑚 or the batch processing time 𝑃𝑏𝑚. The 

processing time 𝑃𝑏𝑚 is determined by the longest job within the batch, which can be decreased by reallocating the longest 

job to a different batch. The batch size 𝑆𝑏𝑚 is defined by the later of two values: the release time of the batch 𝑅𝑏𝑚 and the 

completion time of the previous batch 𝐶(𝑏−1)𝑚. The analysis splits into two cases: 

Case 1: If 𝑆𝑏𝑚 = 𝑅𝑏𝑚, then 𝑆𝑏𝑚 is influenced by the latest job in the batch. In this case, moving the latest job to 

another batch can help reduce 𝑆𝑏𝑚. 

Case 2: If 𝑆𝑏𝑚 = 𝐶(𝑏−1)𝑚, then it depends on the completion time of the previous batch. The completion time 𝐶(𝑏−1)𝑚 

can be expressed as 𝐶(𝑏−1)𝑚 = 𝑆(𝑏−1)𝑚 + 𝑃(𝑏−1)𝑚. 
To reduce 𝑆𝑏𝑚 we must address both 𝑆(𝑏−1)𝑚  and 𝑃(𝑏−1)𝑚. The longest job in the previous batch can be moved to 

another batch to decrease 𝑃(𝑏−1)𝑚. For 𝑆(𝑏−1)𝑚, the process will repeat recursively until we encounter a batch where the 

starting time is not equal to its previous batch's completion time. 

Based on the above analysis, we propose a local search procedure that includes two job adjustment mechanisms: job 

insertion and job interchange. 

- Job Insertion: This mechanism transfers a job from its current batch to an existing batch while respecting machine 

capacity constraints. Given its stricter limitations on capacity, this approach is prioritized to maximize machine utilization. 

- Job Interchange: This mechanism involves swapping two jobs from different batches. While this offers more flexibility, 

it may not directly improve the objective as effectively as job insertion. 

The proposed local search procedure is summarized in Algorithm 1. This algorithm systematically explores the potential 

job adjustments within the defined constraints, focusing primarily on the first class of jobs (the longest job in a batch starting 

at the previous batch's completion time) to effectively reduce 𝐶𝑏𝑚. 

 

Algorithm 1 Local Search procedure 

Require:  

𝜋: Solution before local search; 

𝛱: Solution after local search; 

𝐽: Current job with the longest processing time in 𝐵; 

𝛷𝑖𝑛𝑠
𝐵 : Set of batches, each of which has enough capacity to accommodate 𝐽; 

𝛹𝑖𝑛𝑡
𝐽

: Set of jobs, each of which can be interchanged with 𝐽 without violate the machine capacity; 

Ensure:  

1: set 𝛱 =  𝜋; 𝛺 = ∅ 

2: repeat 

3: 𝛺 = 𝛺 ∪ 𝐵𝑏𝑚 

4: 𝑏 ← 𝑏 − 1  

5: until 𝑆𝑏𝑚 ≠ 𝐶(𝑏−1)𝑚 

6: while 𝛺 ≠ ∅ do 

7: 𝐵 = 𝛺[0] and 𝛺 = 𝛺 − 𝐵 

8: 𝛷𝑖𝑛𝑠
𝐵 = 𝐼𝑛𝑠𝑒𝑟𝑡𝑎𝑏𝑙𝑒𝐵𝑎𝑡𝑐ℎ(𝐽) 

9: while 𝛷𝑖𝑛𝑠
𝐵 ≠ ∅ do 

10: 𝐵𝑖𝑛𝑠 = 𝛷𝑖𝑛𝑠
𝐵 [0] and 𝛷𝑖𝑛𝑠

𝐵 = 𝛷𝑖𝑛𝑠
𝐵 − 𝐵𝑖𝑛𝑠 

11: insert 𝐽 into 𝐵𝑖𝑛𝑠 and recalculate 𝐶𝑚𝑎𝑥 of 𝛱 

12: if 𝐶𝑚𝑎𝑥(𝛱) < 𝐶𝑚𝑎𝑥(𝜋) then 

13: 𝜋 =  𝛱 and return to step 1 

14: else 

15: 𝛱 =  𝜋 

16: end if 

17: end while 

18: 𝛹𝑖𝑛𝑡
𝐽 = 𝐼𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒𝐽𝑜𝑏(𝐽) 
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19: while 𝛹𝑖𝑛𝑡
𝐽 ≠ ∅ do 

20: 𝐽𝑖𝑛𝑡 = 𝛹𝑖𝑛𝑡
𝐽 [0] and 𝛹𝑖𝑛𝑡

𝐽 = 𝛹𝑖𝑛𝑡
𝐽 − 𝐽𝑖𝑛𝑡 

21: interchange 𝐽𝑖𝑛𝑡 with 𝐽 and recalculate 𝐶𝑚𝑎𝑥 of 𝛱 

22: if 𝐶𝑚𝑎𝑥(𝛱) < 𝐶𝑚𝑎𝑥(𝜋) then 

23: 𝜋 =  𝛱 and return to step 1 

24: else 

25: 𝛱 =  𝜋 

26: end if 

27: end while 

28: end while 

29: return 𝜫 

 

5. COMPUTATIONAL RESULTS 
 
5.1 Experimental instances 

 
To assess the performance of the proposed algorithm, we generated a series of random problem instances. For each job 𝑗, the 

integer processing time 𝑝𝑗  was drawn from a uniform distribution in the range [1,10]. Given that the constraints of job size 

𝑠𝑗  and release time 𝑟𝑗  have a significant impact on algorithm performance, we utilized different levels for these constraints 

to evaluate their effects, as detailed in Table 6. 

It is important to note that 𝑟𝑚𝑎𝑥 represents the maximum release time, which is determined using the following equation, 

 

𝑟𝑚𝑎𝑥 = 𝑅 ∗
𝐸(𝑝) ∗ 𝐸(𝑠) ∗ 𝑛

𝐵 ∗ 𝑘
 (19) 

 

where 𝐸(𝑝)  and 𝐸(𝑠)  denote the expected value for processing time and job size, respectively, while the factor 𝑅 

indicates the relative frequency of job arrivals. When 𝑅 = 0, all jobs become available simultaneously at time zero; as 𝑅 

increases, job arrivals are spread over a longer interval. For each combination of problem parameters, five instances were 

generated for job counts 𝑛 = 10,20,50,100,200. In total, this resulted in 150 problem instances used in our experiments. 

Each category of problems is assigned a unique run code. The details regarding the number of machines and processing 

time of jobs are excluded, as these parameters remain constant. For example, a problem with 20 jobs, where job release times 

are generated with 𝑅 = 0.5, and job sizes generated from a uniform distribution [4,8], is designated as J20S3R1. 

 

Table 6. Summary of parameters used to generate instances 

 

Factors Levels 

𝑛 10, 20, 50, 100, 200 

𝑝𝑗 𝑈[1,10] 
𝑟𝑗 𝑈[0, 𝑟𝑚𝑎𝑥] 
𝑠𝑗 𝑈[1,10], 𝑈[2,4], 𝑈[4,8], 𝑅 = 0.5, 1.0 

𝐵 10 

𝑘 2 

 

5.2 Sensitivity analysis 

 
To evaluate the robustness of the proposed ACS-PBPMs algorithm, we conducted a sensitivity analysis on key parameters, 

including the pheromone evaporation rate (𝜌), heuristic information parameter (𝛽), and ant population size (𝜆).  

For the pheromone evaporation rate 𝜌, it was tested across values ranging from 0 to 1 in increments of 0.1, and the 

ultimate value was set to 0.1. This choice effectively balanced the retention of useful information from previous iterations 

with the exploration of new solutions, thereby stabilizing the search process and preventing premature convergence. The 

heuristic information parameter (𝛽), which modulates the influence of pheromone trails versus heuristic information, was 

tested across values from 1 to 6. The experimental results indicated that the ACS-PBPMs performed best for most instances 
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when 𝛽 = 4. For the number of ants 𝜆, we tested several options (5,15,30, 𝑛/2, 𝑛, 2𝑛) and found 𝜆 = 15 achieved a 

favorable balance between solution quality and computation time. 

Additionally, the initial pheromone 𝜏0 is another critical factor influencing the exploration and exploitation balance in 

the search process. A low 𝜏0 can cause the search to quickly converge on the initial solutions generated by the ants, while a 

high 𝜏0 may lead to many iterations being wasted while waiting for pheromone evaporation to sufficiently reduce the values. 

To balance the searchability of ACS-PBPMs, we set the initial pheromone value to 𝜏0 = 1/𝐿𝐵, where LB is derived from 

the employed lower bound in the subsequent subsection. 

Regarding the stopping criterion, we observed that solutions showed minimal improvement after 100 iterations, 

prompting us to set 𝑙𝑚𝑎𝑥 = 100  as one termination rule for ACS-PBPMs. Additionally, we implemented another 

termination criterion based on whether the best solution found matched the lower bound, aimed at reducing computational 

costs. 

 

5.3 Numerical results and comparison analysis 

 

A computational study was conducted to evaluate the efficiency and effectiveness of the proposed algorithms, which were 

implemented in C++. The main goal of this study was to compare the performance of the proposed algorithms against optimal 

solutions, with the latter derived from the MILP model discussed in Section 3. 

To assess the effectiveness of the proposed algorithms, it is essential to compare the solutions they generate with the 

optimal values obtained via CPLEX. However, due to the complexity of the problem, CPLEX faced challenges in finding 

optimal solutions within a reasonable time frame, particularly for larger problem sizes. In pilot experiments, CPLEX was 

unable to achieve optimal solutions for most of these instances, often terminating after a runtime of 3600 seconds. Given 

these constraints, a tighter lower bound (LB) revised by Chen et al. (2010) was employed as an alternative benchmark to 

validate the proposed algorithms' effectiveness. Figure 3 shows the comparison of this LB against CPLEX across a series of 

instances. 

 

 

 

Figure 3. Comparison of CPLEX and LB for small problems with 10 jobs 
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In Figure 3, each sub-figure illustrates the performance of the lower bound (LB) on five instances for a problem 

configuration with ten jobs. The symbol 𝑙𝑐  represents the ratio calculated as 𝑙𝑐 = 𝐶𝑃𝐿𝐸𝑋/𝐿𝐵, meaning the reported optimal 

value from CPLEX divided by the LB value. A smaller 𝑙𝑐 indicates better quality for the LB. The straight line in each sub-

figure denotes the average values of 𝑙𝑐  across the five instances with the corresponding problem configuration. 

As observed, the LB performs best in the S2R2 problem configuration, even matching the optimal values (where 𝑙𝑐 =
1.0 in some instances. From the perspective of average values, all average 𝑙𝑐 values for each configuration fall within the 

interval [1.01, 1.10], suggesting that the LB is highly tight for the target problem. Consequently, we employed it to evaluate 

the effectiveness of our proposed algorithms for other larger problems. 

The proposed algorithms were compared against two competitive meta-heuristic algorithms from related research 

(Beldar et al., 2024; Arroyo et al., 2019). The algorithm that performs best is designated as the benchmark algorithm, referred 

to as BEST-META in this paper. All algorithms (BE, FMF-WIS, BEST-META, and ACS-PBPMs) were evaluated by 

measuring the relative gap between the solutions found and the lower bound (𝐿𝐵). The gap percentage 𝐺𝑎𝑝𝐿𝐵 for algorithm 

A is defined as, 

 

𝐺𝑎𝑝𝐿𝐵(𝐴) =
𝐶𝑚𝑎𝑥

𝐴 −𝐿𝐵

𝐿𝐵
∗ 100%  (20) 

 

where 𝐶𝑚𝑎𝑥
𝐴  denotes the makespan value obtained from algorithm A. A smaller value of 𝐺𝑎𝑝𝐿𝐵(𝐴)  indicates better 

performance of algorithm A. 

Table 7 presents the average results for LB, BE, FMF-WIS, BEST-META, and ACS-PBPMs across different categories. 

For each category, five instances were randomly generated, and the average values over these instances are reported. Columns 

1 and 2 display the run code and the value of LB for each category. Columns 3 and 4 report the performance of the heuristics 

BE and FMF-WIS using the relative difference calculated by Equation (20). Columns 5 and 6 show the mean performance 

and mean runtime of BEST-META, with each instance tested ten times. Similarly, Columns 7 and 8 report the performance 

and runtime of ACS-PBPMs, also tested ten times. 

Since the two heuristics, BE and FMF-WIS, are not iterative or parallel, their computation time is significantly less than 

that of the intelligence algorithms, even for larger job instances. Therefore, the runtimes for these heuristics are not included 

in the result tables. Column 9 provides the difference between the algorithms BE and FMF-WIS, calculated as 𝛬1 =
𝐺𝑎𝑝𝐿𝐵(𝐵𝐸) − 𝐺𝑎𝑝𝐿𝐵(𝐹𝑀𝐹 − 𝑊𝐼𝑆), while Column 10 reports the difference between BEST-META and ACS-PBPMs as 

𝛬2 = 𝐺𝑎𝑝𝐿𝐵(𝐵𝐸𝑆𝑇 − 𝑀𝐸𝑇𝐴) − 𝐺𝑎𝑝𝐿𝐵(𝐴𝐶𝑆 − 𝑃𝐵𝑃𝑀𝑠) . Note that larger values of 𝛬1  and 𝛬2  indicate better 

performance for FMF-WIS and ACS-PBPMs, respectively. Figures 4-6 illustrate the average performance of the four 

algorithms in relation to the number of jobs, job sizes, and release times, with the bars representing the average performance 

of different algorithms. 

As shown in Figure 4 and Table 7, the proposed ACS-PBPMs algorithm outperforms the other algorithms. In contrast, 

the heuristic BE consistently exhibits the worst performance across all categories. For smaller problems with 20 and 50 jobs, 

the performance ranking is ACS-PBPMs, BEST-META, FMF-WIS, and BE. Both heuristics demonstrate inferior 

performance compared to the metaheuristic algorithms. However, for larger problems with 100 and 200 jobs, the ranking 

shifts to ACS-PBPMs, FMF-WIS, BEST-META, and BE, indicating that FMF-WIS outperforms BEST-META in this 

context. 

Furthermore, as the problem size increases, the average value of 𝛬1 rises from 2.01 to 4.56, while 𝛬2 increases from 

2.95 to 8.55, suggesting that the proposed algorithms deliver superior performance compared to BE and BEST-META. 

Notably, this improvement is more pronounced for the ACS-PBPMs algorithm. For smaller problems, the performances of 

ACS-PBPMs and BEST-META are similar due to the limited search spaces. 

As problem size increases, the solution spaces expand significantly, often exhibiting exponential growth. This expansion 

necessitates the exploration of a greater number of potential solutions. In this context, ACS-PBPMs demonstrates superior 

performance compared to BEST-META, effectively navigating larger search spaces to uncover potentially better solutions. 

This advantage is largely due to the unique features incorporated into ACS-PBPMs, which enhance its capability to find near-

optimal solutions amidst expansive search areas. 
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Table 7. Comparison of BE, FMF-WIS, BEST-META, and ACS-PBPMS in different categories 

 

Run Code LB BE (%) FMF-WIS(%) BEST-META(%) Time ACS-PBPMs(%) Time 𝜦𝟏(%) 𝜦𝟐(%) 

J20S1R1 34.20 20.47 21.05 18.13 4.64 18.13 3.51 -0.58 0.00 

J20S1R2 37.20 25.81 26.88 18.28 3.93 16.67 3.59 -1.08 1.61 

J20S2R1 20.60 31.07 32.04 28.16 2.67 23.30 3.45 -0.97 4.85 

J20S2R2 25.80 33.33 16.28 24.03 2.81 13.18 3.47 17.05 10.85 

J20S3R1 41.00 9.27 10.73 8.29 4.03 8.78 3.58 -1.46 -0.49 

J20S3R2 44.60 12.11 13.00 10.31 3.76 9.42 3.46 -0.90 0.90 

Average 33.90 22.01 20.00 17.87 3.64 14.91 3.51 2.01 2.95 

          

J50S1R1 73.20 13.11 15.57 12.02 9.10 9.84 23.07 -2.46 2.19 

J50S1R2 84.20 29.22 28.98 25.42 9.38 20.67 21.80 0.24 4.75 

J50S2R1 43.20 25.00 23.15 22.22 6.00 9.72 22.41 1.85 12.50 

J50S2R2 50.20 32.67 14.74 21.91 6.12 7.97 20.22 17.93 13.94 

J50S3R1 90.80 9.25 9.69 7.93 11.13 6.83 25.32 -0.44 1.10 

J50S3R2 107.60 11.90 13.01 9.85 10.13 8.74 26.53 -1.12 1.12 

Average 74.87 20.19 17.52 16.56 8.64 10.63 23.22 2.67 5.93 

          

J100S1R1 157.00 9.43 11.46 8.28 30.48 8.03 106.11 -2.04 0.25 

J100S1R2 163.00 24.05 18.16 24.23 32.76 15.46 108.83 5.89 8.77 

J100S2R1 87.60 22.83 19.86 19.41 16.03 6.85 107.51 2.97 12.56 

J100S2R2 97.40 29.16 13.76 25.26 15.38 5.34 95.18 15.40 19.92 

J100S3R1 189.00 5.40 6.56 5.08 35.66 4.13 129.77 -1.16 0.95 

J100S3R2 196.40 11.20 10.79 10.29 34.22 7.94 131.72 0.41 2.34 

Average 148.40 17.01 13.43 15.42 27.42 7.96 113.19 3.58 7.47 

          

J200S1R1 302.00 8.74 10.33 8.21 84.67 7.28 648.69 -1.59 0.93 

J200S1R2 322.75 23.63 15.96 23.01 72.80 13.59 674.76 7.67 9.42 

J200S2R1 168.20 23.31 19.86 20.69 57.85 6.06 632.39 3.45 14.63 

J200S2R2 190.00 34.47 15.00 27.89 53.15 4.53 580.11 19.47 23.37 

J200S3R1 394.20 3.20 4.16 3.20 91.48 3.15 825.40 -0.96 0.05 

J200S3R2 395.50 8.22 8.91 7.46 94.96 4.58 807.22 -0.70 2.88 

Average 295.44 16.93 12.37 15.08 75.82 6.53 694.76 4.56 8.55 

 

Figure 5 and Table 7 illustrate that for problems with large job sizes (S3), there is minimal performance difference 

among the four algorithms. In the S3 category, 40% of jobs are required to fit into exactly one batch (those with sizes 7 or 8), 

while the remaining 60% must be efficiently assigned to batches. Since a majority of individual jobs need to be allocated to 

a single batch, the feasible search space is considerably smaller than that of the S1 and S2 problems. Consequently, this 

diminishes the performance disparities among the four algorithms. However, although the number of jobs per batch is lower, 

the mechanism of the proposed candidate list strategy must evaluate more constrained options, increasing the effort to find 

optimal solutions. Additionally, the pheromone update mechanism iteratively accumulates sufficient pheromone data to guide 

the search, further increasing computational effort. These algorithmic components, combined with the inherent complexity 

of the problem, result in longer computational times. 

In contrast, for problems with small job sizes (S2), the performance differences among the four algorithms are more 

pronounced. Specifically, FMF-WIS and ACS-PBPMs deliver superior results compared to BE and BEST-META. Similar 

to the outcomes in larger problems, FMF-WIS outperforms BEST-META in this category as well. In S2, since each batch 

can accommodate at least two jobs, the feasible search space is significantly larger than in the other cases. The strong 

performance of ACS-PBPMs in this context further underscores its effectiveness in finding solutions within extensive 

solution spaces, leveraging the problem-specific knowledge integrated into its design. 

As illustrated in Figure 6 and Table 7, the performance difference among the four algorithms is more pronounced in the 

R2 category compared to R1. In the R2 category, job release times are generated over a longer interval, meaning jobs arrive 

less frequently than in R1. Notably, the performance of BE and BEST-META is relatively unsatisfactory in this category 

compared to R1. This phenomenon can be attributed to the fact that both BE and BEST-META utilize a best-fit rule for batch 
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formation, which does not take release times into account. When jobs arrive frequently, the impact of release time is minimal; 

however, with longer intervals, this oversight can lead to significantly poorer performance in certain instances. 

 

 
 

Figure 4. Performance of four algorithms for different numbers of jobs 

 

 

 

Figure 5. Performance of four algorithms for different sizes of jobs 

 



Xu et al. Parallel Batch Processing Scheduling in a Semiconductor Manufacturing Environment 

 

31 

 
 

Figure 6. Performance of four algorithms for different release times of jobs 

 

In contrast, FMF-WIS and ACS-PBPMs exhibit superior performance regarding release times. This is largely due to 

their use of the Weighted Insertion Strategy (WIS) for batch formation, which considers both release time and job size 

constraints. Additionally, the candidate selection strategy in ACS-PBPMs is specifically designed to accommodate release 

time constraints, enhancing its effectiveness in addressing R2 problems. 

Regarding computational cost, ACS-PBPMs generally require less time than BEST-META for most instances within 

the J20 problem category. However, as the number of jobs increases, the computational cost of ACS-PBPMs can surpass that 

of BEST-META. This increase is primarily due to the differing encoding mechanisms employed by the two algorithms. 

Despite the higher computational cost, the unique encoding strategies and search techniques of ACS-PBPMs enable it to 

maintain reasonable computational times while delivering high-quality solutions.  

The superior performance of the ACS-PBPMs algorithm can be attributed to three key factors. First, it integrates batch 

formation and sequencing decisions within a unified framework, addressing the interdependencies often neglected by 

traditional methods. Second, the candidate list strategy dynamically balances machine utilization and job waiting times, 

enabling efficient decision-making even under complex constraints. Third, the algorithm incorporates a tailored local search 

procedure that refines solutions by reducing machine idle times and optimizing batch configurations. These enhancements 

significantly improve both solution quality and computational efficiency. While ACS-PBPMs perform well, it has potential 

limitations. Its computational cost increases with problem size, making scalability for very large-scale problems challenging. 

Moreover, its performance relies on problem-specific knowledge, which may reduce flexibility for other applications. 

 

6. CONCLUSIONS 
 

In this paper, we address critical scheduling challenges in semiconductor manufacturing, focusing on optimizing batch 

processing to enhance efficiency and sustainability. Our work has the potential to impact broader semiconductor operations, 

enabling scalable, cost-effective, and environmentally sustainable practices to meet growing global demand. Specifically, we 

tackle the scheduling problem at burn-in workstations, often bottlenecks in final testing facilities, by proposing an integrated 

approach that improves machine utilization and reduces makespan. We model this challenge as a scheduling problem on 

multiple PBPMs with non-identical job sizes and dynamic arrivals. We develop a constructive heuristic and an ACS-PBPMs 

algorithm that utilizes problem-specific knowledge. To enhance the effectiveness of the ACS-PBPMs algorithm, we introduce 

a candidate list mechanism that accounts for two key problem constraints, thereby reducing the search space. Furthermore, 

we implement a local search procedure tailored to the unique characteristics of the solution, further improving the 

performance of ACS-PBPMs. Our proposed approaches are benchmarked against CPLEX and two competitive algorithms to 
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evaluate their effectiveness. Experimental results demonstrate that the ACS-PBPMs algorithm outperforms the others, 

particularly for problems with extensive search spaces. 

While this study provides a robust framework for semiconductor scheduling, future research could explore several 

specific extensions. First, the model could be adapted to accommodate unrelated parallel machines with varying capacities 

and speeds, capturing the complexity of diverse manufacturing environments. Second, incorporating sequence-dependent 

setup times and incompatible job families would address practical challenges in semiconductor production. Third, developing 

real-time batch processing algorithms to handle unpredictable job arrivals and machine breakdowns could significantly 

enhance responsiveness. These extensions would strengthen the framework’s relevance to complex, real-world scenarios, 

bridging the gap between theoretical optimization and practical implementation in semiconductor manufacturing. 
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