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This paper presents a heuristic genetic algorithm (GA) to find daily work assignments without hazard exposure. Its 
objective is twofold: (1) to determine a minimum number of workers for a given set of worker locations, and (2) to 
determine safety work assignments with a minimum total worker-location changeover. Firstly, a hybrid procedure to 
determine a lower bound and the minimum number of workers is applied to generate an initial population.  Then, the GA 
with heuristic crossover and mutation is utilized to search for a safety work assignment solution. The swap and multi-start 
algorithms are also employed to improve the GA solution. The heuristic GA is able to solve both balanced and unbalanced 
work assignment problems. Comparing with an optimization approach, the GA can generate the safety work assignments 
with the minimum total worker-location changeover in much shorter computation time.   
 
Significance:     Workers are commonly exposed to various occupational hazards such as chemical, radiation, noise, 

thermal, and physical loads. When job rotation is implemented, the heuristic GA can be used to 
determine the minimum number of workers and their safety work assignments. Additionally, the GA 
yields productive work assignments since the total worker-location changeover is minimized.  
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1. INTRODUCTION 
  

Frequently occurred injuries and health problems in the workplace are caused by excessive exposure to occupational 
hazards. For examples, low back injury is caused by overexertion; hearing loss is caused by excessive exposure to loud 
noise. In most industrial facilities, the presence of occupational hazards is inevitable. To protect workers from such hazards, 
both the allowable exposure duration and permissible exposure level are usually established. It is also common to set the 
permissible level as a quantity that must not be exceeded within an 8-hour workday. For examples, OSHA (1983) imposes 
an 8-hour time-weighted average sound level (8-hour TWA) of 90 dBA as a permissible daily noise exposure. NIOSH 
(1997) recommends a daily energy expenditure limit to be 33 percent of maximum oxygen uptake of an individual worker. 
Permissible levels for other occupational hazards such as thermal, toxic chemical substances, and radiation can be found in 
the literature.  

Here, we emphasize industrial noise hazard since it exists in most industrial facilities. Moreover, noise-induced hearing 
loss is one of the most common occupational diseases and the second most self-reported occupational illness or injury. It 
has been estimated that 30 million U.S. workers are currently exposed to loud noise on the job and an additional 9 million 
U.S. workers risk getting hearing loss (NIOSH, 1998). We also emphasize job rotation, a frequently recommended 
administrative control to reduce hazard exposure (NIOSH, 1981; OSHA, 1983). Basically, workers are assigned to do 
various jobs and also rotate their jobs in different periods during one workday. In this way, the effect from hazardous jobs 
can be split and shared by many workers, instead of concentrating on some particular workers. Job rotation offers a trade-
off between safety and productivity (Olishifski and Standard, 1988). However, detailed discussion on job rotation is 
relatively scarce.  

Job rotation is usually (and mistakenly) judged to be simple and easy to implement. In practice, work assignments that 
specify work areas where individual workers are to be assigned to and work duration at each worker location must be defined. To 
search for the safety work assignments for workers (such that their daily noise exposures do not exceed the permissible 
level) is not an easy task. Generally, a job rotation problem can be categorized as a balanced work assignment or an  
unbalanced work assignment problem, depending on the numbers of workers and of worker locations. Nanthavanij and 
Yenradee (1999) developed a minimax work assignment model to determine the optimal work assignments for workers so 
that a maximum daily noise exposure that any worker receives is minimized. Yaoyuenyong and Nanthavanij (2003) later 
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developed a simple heuristic for solving large minimax work assignment problems. For problems in which noise levels are 
excessively high, Nanthavanij and Yenradee (2000) developed a mathematical model to determine a minimum number of 
workers for job rotation so that their daily noise exposures do not exceed the permissible level. A major weakness of these 
work assignment models is that they tend to be impractical (requiring long computation time) when the problem size 
becomes large. In fact, the models fail to find even feasible work assignment solutions for the problems with very large 
problem size. 

Genetic algorithms (GAs) have served as an alternative approach to a wide range of combinatorial optimization 
problems, such as knapsack problems (Olsen, 1994), quadratic assignment problems (Tate and Smith, 1995), traveling 
salesman problems (Goldberg and Lingle, 1985; Cheng and Gen, 1994; Yang, 1997), and machine-part cell formation 
problems (Mak and Wong, 2000; Brown and Sumichrast, 2001; Chu and Tsai, 2001). For the balanced work assignment 
problem, Nanthavanij and Kullpattaranirun (2001) introduced a genetic algorithm to determine near-optimal minimax work 
assignments. A heuristic genetic algorithm for the minimax work assignment problem that improves the computation time 
and quality of solution was later developed by Kullpattaranirun and Nanthavanij (2005). Readers should note that those two 
GAs are unconstrained GAs; thus, the resulting minimax noise exposure may exceed the permissible level.    

From an engineering viewpoint, not only safety but also productivity of workers needs to be taken into account when 
job rotation is implemented. The work assignments that have many worker-location changeovers may affect work 
productivity. Therefore, to achieve productive work assignments, a total worker-location changeover must be minimized. In 
this paper, a new constrained GA for the workforce scheduling problem is proposed.  The algorithm employs a hybrid 
procedure developed by Yaoyuenyong and Nanthavanij (2004) to initially determine a lower bound of the number of 
workers and to generate an initial population. The GA then uses heuristic crossover and mutation operations to search for 
the work assignment solution with the minimum total worker-location changeover. The swap and multi-start techniques are 
also used to improve the GA solution. It is important to note that the heuristic GA yields the safety work assignment 
solution since all daily noise exposures do not exceed the permissible level. 
 
2.  WORKFORCE SCHEDULING WITH MINIMUM TOTAL WORKER-LOCATION    
     CHANGEOVER 
 
Let us briefly review basic formulas for estimating the 8-hour TWA which can be referred to as daily noise exposure. 
Consider a facility where job rotation is implemented, the 8-hour TWA (in dBA) that worker i receives, Wi, is estimated 
from 
 

Wi =   i = 1,…, m   …        (1) 

 
where  =   combined noise level (in dBA) measured at worker location j 
 m   =   number of workers 
 n  =   number of worker locations 
 Cj =  length of time (in hour) spent at worker location j 

 
When dividing an 8-hour workday into p equal work periods, it is possible to estimate an amount of noise exposure 

(called noise weight) per work period received by whoever is present at worker location j, wj. Note that wj is unitless. 
 

wj =         …          (2) 

 
From Eq. (2), it can be shown that to yield safety daily noise exposure in which the permissible level is 90 dBA, a total 

noise weight per workday cannot exceed 1. 
Job rotation is a management practice to rotate the current workforce among worker locations so as to achieve safety 

daily noise exposures in all workers. Usually, the number of workers is equal to the numbers of worker locations, resulting 
in the fully busy workforce. However, if noise levels in the facility are excessively high, additional workers must be added 
to the workforce, resulting in the unbalanced work assignment problem. The benefit of this is that it helps to reduce 
workers’ daily noise exposures by including idle work periods in the work assignments. 

To formulate mathematical models of job rotation, the following assumptions are followed. 
 1. The maximum working time (for workers and machines) per day is eight hours. 
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 2. A workday is divided into p equal periods. Job rotation occurs at the end of work period.  
 3. Each worker location requires only one worker to attend per work period. 
 4. Each worker can attend only one worker location per work period. 
 5. Worker’s efficiency is independent of the task he/she is assigned to perform. Similarly, task output is independent 
of the worker. 

The following notation is used in the formulation of the work assignment model with the minimum number of workers 
and of the model with the minimum total worker-location changeover. 
F total number of worker-location changeover 
fj number of worker-location changeovers at worker location j 
m number of workers in the current workforce 
M number of available workers in the increased workforce 
n number of worker locations 
p number of work periods per workday 
wj noise weight per work period at worker location j  
xijk 1 if worker i is assigned to worker location j in work period k; 0 otherwise 
yi 1 if worker i is chosen from the workforce; 0 otherwise 
 
2.1 Work Assignment Model with Minimum Number of Workers 
Letting M be number of (current + additional) workers in the increased workforce where M >> n, a mathematical model to 
determine safety work assignments using the minimum number of workers can be expressed as follows. 
 

Minimize              …        (3) 

subject to 

     ≤       1  i = 1,…, M      …        (4) 

     ≤     1   i = 1,…, M; k = 1,…, p     …        (5) 

     =     1   j = 1,…, n; k = 1,…, p     …        (6) 

     ≤     p×yi  i = 1,…, M      …        (7) 

xijk, yi     =     (0, 1)         …        (8) 
   

Among the five constraints ((4) – (8)), Constraint (4) specifies that none of the workers receives the total noise weight 
greater than 1, Constraint (5) indicates that a worker cannot be present at more than one worker location within the same 
work period, Constraint (6) states that a worker location needs only one worker to attend in each work period, Constraint 
(7) requires that for a worker to be assigned, he/she has to be chosen from the workforce, and Constraint (8) specifies the 
integrality of both decision variables.  
 
2.2 Work Assignment Model with Minimum Total Worker-Location Changeover 
When job rotation is implemented and a workday is divided into several equal work periods, workers are usually required 
to rotate among worker locations. Each time he/she has to move to a new worker location, a worker-location changeover 
occurs. At worker location j, a formula to determine the number of worker-location changeovers fj is 
 

fi     =         j = 1, …, n    …        (9) 

 
For all n worker locations, the total worker-location changeover F is 
 



Asawarungsaengkul and Nanathavanij  
 
 

376 

F   =          …      (10) 

 
A mathematical model to determine the work assignment solution with the minimum total worker-location changeover 

can be written as follows. 
 

Minimize            …      (11) 

subject to 

     ≤     1  i = 1,…, m      …      (12) 

     ≤     1   i = 1,…, m; k = 1,…, p     …       (13) 

     =     1   j = 1,…, n; k = 1,…, p     …      (14) 

xijk     =     (0, 1)          …      (15) 
 
 
3.  GENETIC ALGORITHM FOR SAFETY WORKFORCE SCHEDULING WITH  
     MINIMUM TOTAL WORKER-LOCATION CHANGEOVER 
 
The GA for safety workforce scheduling with the minimum total worker-location changeover requires conventional 
parameters, namely, population size Popsize, crossover probability Pc, mutation probability Pm, and maximum generation 
Max_gen (or termination time). Briefly, at an initial iteration, set generation as gen = 0. Next, initial chromosome vk’s (k = 
1, 2, …, Popsize) are created. The GA operations including crossover, mutation, and selection perform the evolutionary 
process. Before selection, the fitness value of each chromosome is computed from the evaluation function. The best 
chromosome is registered after the selection process. Then, update the gen value (gen = gen +1). Repeat the GA procedure 
until gen = Max_gen or the computation time reaches the termination time.  

The solution procedure can be divided into two phases. 
 
Phase 1: Generating initial population  
The hybrid procedure developed by Yaoyuenyong and Nanthavanij (2004) is adopted to determine the minimum number of 
workers (m*) for safety work assignments. The work assignments obtained from this phase will serve as the initial 
population for the next phase.  
 
Phase 2: Finding safety work assignment solution with minimum total worker-location changeover 
With an optimal workforce m* and an initial set of work assignments, the GA is applied to improve the work assignment 
solution to obtained the solution with the minimum total worker-location changeover and all daily noise exposures of 
workers not exceeding 90 dBA.  

The above two phases will yield the work assignment solution that minimizes both the number of workers required for 
job rotation and the total worker-location changeover. Further, all workers’ daily noise exposures will not exceed 90 dBA. 
 
3.1 Chromosome Coding and Initial Population 
To encode work assignment solutions as chromosomes, one needs to understand the structure of work assignments and how 
decision variables can be encoded into strings. Firstly, let us consider a simple case of daily work assignments in which 
each worker is rotated among worker locations throughout the entire day. Table 1 gives a possible set of work assignments 
for five workers (Wl, W2, W3, W4, and W5) and four worker locations (WLl, WL2, WL3, and WL4) when there are four 
work periods (P1, P2, P3 and P4) per workday. It is noted that a permutation representation scheme is suitable for this type 
of problem. From Table 1, it is seen that workers W2, W3, and W4 must work in all four work periods, while worker W1 
works only in the first two work periods (attending worker location WL1) and worker W5 also works only in the last two 
work periods (attending worker location WL1). 
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Table 1.  Example of a unbalanced work assignment problem (m = 5, n = 4) 
 

Work Period Worker  P1 P2 P3 P4 
W1 WL1 WL1 - - 
W2 WL2 WL3 WL2 WL2 
W3 WL3 WL2 WL3 WL3 
W4 WL4 WL4 WL4 WL4 
W5 - - WL1 WL1 

 
 

Since the above example is an unbalanced work assignment problem (m = 5, n = 4), we can simply add worker location 
5 (*WL5*) as a dummy location to convert it to a balanced problem (see Table 2). When any worker is assigned to *WL5*, 
he/she will be idle in that work period. (In practice, the worker may be assigned to a low-noise area.) 

 
 

Table 2.  A balanced work assignment problem with a dummy worker location *WL5* (m = 5, n = 5) 
 

Work Period Worker P1 P2 P3 P4 
W1 WL1 WL1 *WL5* *WL5* 
W2 WL2 WL3 WL2 WL2 
W3 WL3 WL2 WL3 WL3 
W4 WL4 WL4 WL4 WL4 
W5 *WL5* *WL5* WL1 WL1 

 
 

Fig. 2 shows a chromosome representation of the work assignment problem as a string. The chromosome string is 
divided into p segments, where each segment represents a work period. In each segment, there are n genes, where each gene 
represents a worker location. For our example, the chromosome consists of four segments, with five genes in each segment. 
The first five genes show the work assignments for the five workers in work period P1, the next five genes for the work 
assignments in work period P2, and so on. It should be noted that in each period, the order of assignment is WLl, WL2, 
WL3, WL4, and *WL5*. This chromosome representation allows each worker to attend only one worker location in one 
work period, and each worker location has only one worker to attend in one work period as well. 

It is also observed that the length of chromosome string is equal to m × p.  
 
 

 
 

Fig. 1.  Chromosome encoding 
 
 

There are constant number of chromosomes in the population as denoted by Popsize. The initial population is obtained 
from the hybrid procedure.  
 
3.2 Crossover 
Crossover is a genetic operation that attempts to create new chromosomes that may be stronger than their parents. Two 
chromosomes are randomly selected from the population for mating. Two new chromosomes, called offspring, can be 
obtained by exchanging some parts of selected chromosomes. Crossover probability Pc is a number that indicates the 
number of pairs of chromosomes that will be involved in the crossover operation.  

For chromosomes that are coded using permutation representation, there are several applicable crossover operators, 
namely, partially matched crossover (PMX), cycle crossover, order crossover, position-based crossover, heuristic crossover, 
and so on (Gen, 1997). The number of chromosomes involved in the crossover operation (or crossover rate) must also be 
determined. Usually, a crossover rate is defined as a percentage of the total number of chromosomes. Note that the number 
of chromosomes in the population remains unchanged.  
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Given cross_no     =   number of selected chromosomes involved in the crossover 
   =   round(Pc × popsize) 
  cross_pair   =   number of pairs of chromosomes involved in the crossover 

then 
 

cross_pair     =         …      (16) 

 
A heuristic crossover is developed from the concept of the classical partially matched crossover (PMX). It consists of 

two stages: Crossover and Improvement. In the Crossover stage, the procedure is similar to that of the PMX crossover. A 
work period called selected work period is randomly selected. After exchanging chromosome segments between the parents 
to generate a pair of offspring, the segment on the right side of the cut position is emptied for both offspring. In other 
words, all workers are unassigned. Then, randomly select a work period called compared work period that is next to the 
selected work period. In the Improvement stage, workers are then reassigned to worker locations in order to minimize the 
total worker-location changeover. The improvement attempt starts with an objective to assign the worker to the worker 
location where he/she currently works in the compared work period. To obtain a feasible work assignment solution, the 
PMX concept is used to map some genes.  

The heuristic crossover algorithm can be described as follows. 
 1. Randomly select pairs of parent chromosomes from the population. The number of pairs is determined from the     
           given crossover rate. 
 2. For each pair of chromosomes, randomly select a selected work period. The selected period is the same work period  
           for both parent chromosomes. 
 3. For each pair of chromosomes, randomly select a cut position. This cut position is also the same position for both  
           parent chromosomes. 
 4. After cutting the chromosomes, exchange the right-hand sides of both parents to generate new offspring. 
 5. For each pair of offspring, randomly select a compared work period which is next to the selected work period.  
 6. For offspring No. 1, empty the genes after the cut position in the corresponding period (i.e., leave the workers  
           unassigned). Then, reassign workers to the same worker locations where they used to be assigned in the compared   
           work period.  
 7. For unassigned workers in Step 6, assign the worker to the worker location in the previous order before the crossover  
           operation. Repeat this step with the remaining workers and worker locations until the chromosome (of the offspring)  
           is completed. 
 8. Repeat Steps 6 - 7 for offspring No.2. 

The crossover probability used in this study is 0.40. (That is, the crossover rate is 40%.) 
 
3.3 Mutation 
Mutation is a genetic operation which makes random alterations to various chromosomes. The rate of mutation is defined as 
a percentage of the total number of genes in the population that are allowed to be changed. Random mutation changes a small 
number of genes in chromosomes depending on a mutation probability Pm. Letting mut_no and chro_l denote number of 
mutated genes and length of chromosome, respectively, then mut_ no can be calculated as follows.  
 
mut_no     =     Pm × chro_l × popsize       …      (17) 
 

The heuristic mutation algorithm is adapted from the swap mutation and can be described as follows. 
 1.  Randomly choose a chromosome and a work period (called selected work period) in which mutation will occur.  
 2. Randomly choose a worker location (or a worker) in the selected work period.    
 3. Randomly select a compared work period which is next to the selected work period and find the worker location  
           where the worker in the selected work period (in Step 2) works in the compared work period. 
 4. Within the selected work period, swap the two workers working in both worker locations found in Steps 2 and 3. 

The mutation rate used in this study is 5%. 
 
3.4 Fitness, Penalty, and Evaluation Functions 
An evaluation function is used to evaluate the quality of chromosomes in each generation. The chromosome receiving a 
high evaluation value will potentially be selected for inclusion in the next generation. To obtain the evaluation function, a 
fitness function and a penalty coefficient have to be defined. Details of these topics can be found in Michalewicz et al 
(1996), Gen and Cheng (1997 and 2000).   
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3.4.1 Fitness Function 
Here, a fitness value of the work assignment model (described by (11) – (15)) is defined as the total worker-location 
changeover F. Thus, strong chromosomes are those chromosomes that have low fitness values. A fitness function of 
chromosome k, fk(vk), can be written as 
 
fk(vk)     =     F          …      (18) 
 
3.4.2 Penalty Function 
Since this problem has an upper bounded constraint, i.e., each daily noise exposure must not exceed 90 dBA (or the sum of 
noise weights per workday of each worker must not exceed 1), a penalty term is added to the fitness function so that any 
chromosome that falls in infeasible space will have a lesser chance to be selected for inclusion in the next generation than 
others. The penalty coefficient of chromosome k, pk, is proportional to the amount of extra daily noise weight of all workers 
and can be determined using the following function. 
 

pk     =          …      (19) 

 where:  Wi   =  ,  i = 1, …, m 

  Vi    =  

  θ = a positive value 
  

To protect from early rejecting an infeasible chromosome that may give good offspring after the GA operations, the 
penalty function is proportional to the generation number. 
 
3.4.3 Evaluation Function 
An function to evaluate the fitness of chromosomes in the current population and of new offspring is a function of the 
fitness function and penalty coefficient. An evaluation function value of chromosome k, eval(vk) can be defined as 
 

eval(vk)     =       k = 1, 2, …, Popsize    …      (20) 

 
3.5 Selection Procedure 
The selection procedure involves two basic issues, namely, sampling space and sampling mechanism. 
 
3.5.1 Sample Space 
This paper uses enlarged sampling space in the GA operation. This method keeps both parents and offspring in the 
sampling space called enlarged sampling space. Therefore, the size of the sampling space is equal to Popsize + (cross_pair 
× 2) + mut_no. For this method, the chances that parents and offspring will be selected for inclusion in the next generation 
depend on their evaluation function values. 
 
3.5.2 Sampling Mechanism 
Sampling mechanism involves how to select chromosomes from the sampling space to be the new population. In this study, 
roulette wheel selection is employed. Roulette wheel selection is an elitist approach in which the best chromosome has the 
highest probability to be selected for inclusion in the next generation. The higher the evaluation function value a 
chromosome has, the more potential it will be selected. The next generation has the same population size as the current one. 
With the elitist selection, the best chromosome is firstly selected to the next generation. 
 
3.6 Termination Rule 
The GA procedure is terminated when the iteration hits a maximum generation denoted by Max_gen. In addition, the 
stopping criterion may use both the maximum generation and termination time when the problem size is increased. 
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3.7 Local Improvement 
A local improvement involves a procedure for improving the best work assignment solution obtained from each generation. 
In this paper, the local improvement employs two algorithms developed by Yaoyuenyong and Nanthavanij (2004). 
 
3.7.1 Swap Algorithm 
The objective of the swap algorithm is to swap or exchange two workers (from different worker locations) in the same work 
period so that the total worker-location changeover is decreased while daily noise weight that each swapped worker 
receives does not exceed 1. For any p periods, there are p sub-algorithms which will be applied consecutively. The swap 
algorithm is described below.  
 
r-Period Swap for Decreasing Total Worker-Location Changeover (r = 1 to p/2 where p = 2, 4, or 8) 
 1. Randomly choose a worker location j* to which worker i* is currently assigned.  
 2. Find all  possible combinations of r periods.  Let S be a set of su’s such that S = {su: u = 1,…, }, where each  
           su represents each combination of r periods. 
 3. For each combination su, consider all periods ka where a ∈ su. 
 4. Find any worker location jo (to which worker io is assigned) where jo ≠ j* such that [ + ] can be reduced  

           (after swapping) and Wi=i* and are less than or equal to 1.  
 5. If there exists such worker location jo, then swap worker io and worker i* between worker locations jo and j* in all  
           period ka where a ∈ su.   
 6. Repeat Steps 3 – 5 for ∀su ∈ S. 
 
3.7.2 Multi-start Algorithm 
Multi-start algorithm is employed to repeat the swap algorithm. The current best work assignment solution from the 
previous step will be shaken and will re-enter the swap algorithm. The process of shaking is to randomly select one pair of 
workers in the same work period and swap their worker locations. Then, the resulting work assignments will also be shaken 
and subsequently improved by the swap algorithm again. It is expected that this technique can move the current solution to 
a better neighborhood.   
 
4.  NUMERICAL EXAMPLES AND RESULTS 
 
The following parameters are used in the demonstration of the proposed GA procedure. The population size is set at 50 
chromosomes. The maximum generation depends on the size of the problem. The heuristic crossover and heuristic mutation 
are used, with Pc and Pm being 0.40 and 0.05, respectively. A constant value of the penalty function θ is 10.  Additionally, 
the number of times that the work assignment solution is shaken (and improved) is set to 15 based on our computational 
experiment. 

Three unbalanced work assignment problems are examined: (1) “M = 5 and n = 4” problem, (2) “M = 8 and n = 6” 
problem, and (3) “M = 12 and n = 10” problem. The number of work periods per workday for the three problems is four periods 
(p = 4). The maximum generations for the three problems are 2,500, 4,000 and 30,000 generations, respectively. The termination 
time is set at 1,000 seconds for all three problems. Each problem is solved 10 times. 

All three problems are solved using the proposed heuristic GA, which is written in Visual Basic. For the first two problems, 
an optimization software program called LINGO is also utilized to obtain the work assignment solution with the minimum 
number of workers and the minimum total worker-location changeover. The third problem, however, is too large for LINGO to 
find the optimal solution. 
 
4.1 Problem 1 (M = 5 and n = 4) 
Consider the facility where there are four worker locations (WLl ,  WL2, WL3, and WL4) and five workers available for 
job rotation. It is assumed that noise weights per work period measured at the four worker locations are 0.3830, 0.3120, 
0.2510, and 0.1850, respectively. The two work assignment models described in Sections 2.2 and 2.3 are solved to obtain the 
optimal work assignment solution with m* and F* (see Table 3). Then, the proposed heuristic GA is applied to solve this problem. 
Table 4 shows the initial work assignment solution (from the hybrid procedure) and the final work assignment solution (from 
the heuristic GA). 
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Table 3.  “Optimal” daily work assignments for the five workers (Problem 1) 
 

Work Period Worker 1 2 3 4 
Daily Noise Exposure 

(dBA) 
W1 WL4 WL4 WL2 WL2 89.96 
W2 WL2 WL2 WL4 WL4 89.96 
W3 WL3 WL3 - WL1 89.12 
W4 WL1 - WL3 WL3 89.12 
W5 - WL1 WL1 - 88.08 

Note: m* = 5; F* = 5. 
 

Table 4.  “GA-based” daily work assignments for the five workers (Problem 1) 
 (a)  The initial solution 

Work Period Worker 1 2 3 4 
Daily Noise Exposure 

(dBA) 
W1 WL4 WL4 WL2 - 89.08 
W2 - WL1 WL4 WL2 89.08 
W3 WL2 - WL1 WL3 89.60 
W4 WL3 WL3 - WL1 89.12 
W5 WL4 WL2 WL3 WL4 89.50 

Note: m* = 5; F = 11. 
(b)  The final solution 

Work Period Worker 1 2 3 4 
Daily Noise Exposure 

(dBA) 
W1 WL4 WL4 WL4 WL2 88.97 
W2 WL2 WL2 WL2 - 89.52 
W3 - WL1 WL1 WL4 89.64 
W4 WL3 WL3 - WL1 89.12 
W5 WL1 - WL3 WL3 89.12 

Note: m* = 5; F* = 5. 
 
 
4.2 Problem 2 (M = 8 and n = 6) 
Next, we consider another facility where there are six worker locations (WLl ,  WL2, WL3, WL4, WL5, and WL6) and eight 
workers for job rotation (Wl, W2, W3, W4, W5, W6, W7, and W8). Noise weights per work period at the six worker locations 
are assumed to be 0.3550, 0.3000, 0.2460, 0.2250, 0.1550, and 0.1200, respectively. Tables 5 and 6 show the “optimal” work 
assignment solution (m* = 6 and F* = 4) and the “GA-based” work assignment solution (m* = 6 and F* = 4) obtained form 
LINGO and the heuristic GA, respectively. 

 
Table 5.  “Optimal” daily work assignments for the six workers (Problem 2) 

 
Work Period Worker 1 2 3 4 

Daily Noise Exposure 
(dBA) 

W1 WL5 WL5 WL2 WL2 89.32 
W2 WL2 WL2 WL5 WL5 89.32 
W3 WL1 WL1 WL6 WL6 89.63 
W4 WL4 WL4 WL4 WL4 89.24 
W5 WL6 WL6 WL1 WL1 89.63 
W6 WL3 WL3 WL3 WL3 89.88 

Note: m* = 6; F* = 4. 
 

Table 6.  “GA-based” daily work assignments for the six workers (Problem 2) 
 (a)  The initial solution 

Work Period Worker 1 2 3 4 
Daily Noise Exposure 

(dBA) 
W1 WL1 WL3 WL4 WL6 89.60 
W2 WL3 WL1 WL6 WL4 89.60 
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W3 WL5 WL6 WL1 WL3 89.04 
W4 WL6 WL5 WL3 WL1 89.04 
W5 WL2 WL4 WL2 WL5 89.85 
W6 WL4 WL2 WL5 WL2 89.85 

Note: m* = 6; F = 18. 
(b)  The final solution 

Work Period Worker 1 2 3 4 
Daily Noise Exposure 

(dBA) 
W1 WL4 WL4 WL4 WL4 89.24 
W2 WL1 WL1 WL6 WL6 89.63 
W3 WL3 WL3 WL3 WL3 89.88 
W4 WL6 WL6 WL1 WL1 89.63 
W5 WL2 WL2 WL5 WL5 89.32 
W6 WL5 WL5 WL2 WL2 89.32 

Note: m* = 6; F* = 4. 
 
 

Table 7.  “GA-based” daily work assignments for the eleven workers (Problem 3) 
(a)  The initial solution 

Work Period Worker 1 2 3 4 
Daily Noise Exposure 

(dBA) 
W1 WL1 - WL5 WL8 88.83 
W2 - WL1 WL8 WL5 88.83 
W3 WL6 WL10 WL1 WL7 89.80 
W4 WL9 WL6 WL7 WL1 89.84 
W5 WL2 WL8 WL4 - 88.64 
W6 WL8 WL2 - WL4 88.64 
W7 WL5 WL7 WL2 WL9 89.73 
W8 WL7 WL5 WL9 WL2 89.73 
W9 WL3 WL9 WL10 WL3 89.80 

W10 WL4 WL3 WL6 WL10 89.83 
W11 WL10 WL4 WL3 WL6 89.83 

Note: m = 11; F = 33. 
 

(a)  The final solution 
Work Period Worker 1 2 3 4 

Daily Noise Exposure 
(dBA) 

W1 WL1 WL8 WL8 WL8 90.00 
W2 - WL1 WL1 WL9 89.67 
W3 WL8 WL5 WL5 WL5 89.64 
W4 WL7 WL7 WL7 WL7 88.40 
W5 WL4 WL4 WL4 - 88.51 
W6 WL2 WL2 - WL4 89.89 
W7 WL5 - WL2 WL2 89.74 
W8 WL9 WL9 WL9 WL1 88.97 
W9 WL10 WL10 WL3 WL3 89.75 

W10 WL3 WL3 WL10 WL10 89,75 
W11 WL6 WL6 WL6 WL6 89.15 

Note: m = 11; F = 9. 
 
4.3 Problem 3 (M = 12 and n = 10) 
Problem 3 assumes that there are 12 workers available for job rotation (W1, W2, …, W12). These workers are to be assigned to 10 
worker locations (WL1, WL2, …, WL10). Noise weights per work period at the 10 worker locations are assumed to be 0.4002, 
0.35717, 0.3333, 0.2711, 0.2506, 0.2222, 0.2003, 0.1999, 0.1555, and 0.1500, respectively. Due to its size that is relative large, 
only the heuristic GA is applied to solve Problem 3. The hybrid procedure yields the initial work assignment solution with m = 
11 and F = 33. Then, the heuristic GA is able to reduce the total worker-location changeover to 9 times (F = 9). The resulting 
work assignment solutions are shown in Table 7.  
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4.4 Comparisons of Work Assignment Solutions between LINGO and Heuristic GA 
To evaluate both the efficiency and effectiveness of the heuristic GA, the following three indices are used: (1) number of workers 
involved in job rotation, (2) total worker-location changeover, and (3) computation time. In terms of the computation time of the 
heuristic GA, we consider an average hit time as computed from the 10 replicates. Readers should note that the hit time is the time 
mark at which the best solution is found by the GA. Table 8 shows the comparisons of the three indices between LINGO and the 
heuristic GA. 

In problems 1 and 2 where LINGO can determine the work assignment solutions with the minimum number of workers, it is 
seen that the heuristic GA is also able to yield the solutions with the same minimum numbers of workers. Both problems result in 
the balanced work assignments. In problem 3, the heuristic GA yields the unbalanced work assignments since eleven workers are 
required to work at ten worker locations. Although there is no minimum solution from LINGO to compare with, it is believed that 
the heuristic GA is able to determine the minimum number of workers for job rotation. From daily noise exposures in Table 7, one 
can easily see that it is unlikely that the safety work assignments can be obtained when the number of workers is less than eleven. 

When evaluating the total worker-location changeover, the heuristic GA is as effective as LINGO in yielding the work 
assignment solution with the minimum total worker-location changeover. However, the initial solution generated by the hybrid 
procedure still has many worker-location changeovers. It is the heuristic GA that significantly improves the initial solution such that 
the final work assignment solution has the minimum total worker-location changeover. 

The computation time comparison shows that the heuristic GA is very efficient when comparing with LINGO. In 
problems 1 and 2, the heuristic GA is able to generate a feasible solution that satisfies all constraints and in relatively short 
computation time. It is perhaps attributed to an ability of the hybrid procedure in finding the lower bound that is the same or 
very close to the minimum number of workers for job rotation. This ability helps to shorten the computation time of the heuristic 
GA since it does not have to do multiple tasks.   

 
Table 8.  Comparisons between LINGO and Heuristic GA 

 

Problem Solution Approach Number of Workers Total Worker-Location 
Changeover 

Average Hit Time 
(second) 

Optimization (LINGO) 5 5 5,454.00 Problem 1 Heuristic GA 5 5 0.20 
Optimization (LINGO) 6 4 767.00 Problem 2 Heuristic GA 6 4 0.50 
Optimization (LINGO)* - - - Problem 3 Heuristic GA 11 9 178.40 

*LINGO was terminated after running for 8 hours and not being able to find a feasible solution. 
 

5.  CONCLUSIONS 
 
In this paper, we demonstrate the application of genetic algorithms to determine daily work assignments for workers such that their 
hazard exposures do not exceed the permissible level. Although only noise hazard is discussed, the proposed heuristic GA can be 
modified to solve other occupational hazard problems. The work assignment solution generated by the heuristic GA also requires 
the minimum number of workers for job rotation and results in the minimum total worker-location changeover, which can help to 
promote the implementation of job rotation in real work situations. 

The two mathematical models presented in this paper are integer nonlinear programming models. As the size of the 
problem increases, it becomes impractical to solve the problem to optimality. That is, the optimization approach to safety-based 
workforce scheduling is limited in not only the problem size but also the computation time.  The use of GA is expected to be an 
alternative approach to this type of problem. By considering both the number of workers to safely attend all worker locations and 
the worker-location changeovers caused by job rotation, the heuristic GA can deal with job rotation in a quantitative manner and 
yield a productive work assignment solution. 

In this paper, the proposed heuristic crossover and heuristic mutation not only generate offspring based on some 
classical concepts but also are intended to improve the offspring so that they will be the best among all feasible offspring. 
The Improvement stage utilizes specially developed procedure to evaluate the fitness of the offspring and seek the best 
offspring through a series of systematic exchanges of workers among worker locations. Moreover, with the swap and multi-
start algorithms as the local improvement, it is expected to help the heuristic GA to effectively search for a better solution. 

Three workplace noise problems are presented as examples to compare the solutions obtained from two solution 
approaches, i.e., optimization and heuristic GA. Each problem is solved for ten times and each using the maximum 
generation or the termination time as the stopping condition. The results from the examples show that the heuristic GA can 
find the optimal solution for small-sized (n ≤ 6) problems. The heuristic GA matches the optimization program (LINGO) 
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with respect to the quality of the solution (as judged from m* and F*).  In terms of the average hit time, the heuristic GA is 
significantly superior to LINGO. 

Job rotation has always been recommended in the literature as an administrative approach to preventing workers from 
being excessively exposed to occupational hazards, such as, noise, thermal, radiation, and toxic chemicals.  To rotate 
several workers among a set of tasks can be very confusing especially when the numbers of workers, tasks, and work 
periods are large.  This difficulty tends to make job rotation impractical.  Even when it is implemented, the rotation pattern 
may not result in an optimal hazard exposure reduction.  Moreover, when considering only the safety issue, it is possible 
that workers may be rotated redundantly.  For example, a worker might be assigned to task 1 in the 1st period, then switched 
to task 2 in the 2nd period, and then switched back to task 1 again in the 3rd period.  This results in two worker-location 
changeovers.  Excessive worker-location changeovers can lead to a decrease in productivity.  The technique presented in 
this paper would help management to enhance workplace safety without sacrificing too much productivity decline. 

When applying the above mentioned technique, it is necessary to firstly consider the safety issue since it is required by 
the safety law.  From a number of tasks involved and their hazard exposure levels, the minimum number of workers 
required for implementing job rotation effectively needs to be determined.  That is, each worker must not be exposed to the 
hazard beyond the permissible daily limit.  This can be achieved by using a trial-and-error approach.  Then, the proposed 
GA technique is applied to find the daily work assignment solution such that each worker’s hazard exposure does not 
exceed the permissible limit and the total worker-location is minimized. 
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