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This paper proposes an efficient algorithm to evaluate system reliability for many real-life systems such as manufacturing, 
telecommunication and computers systems. A multicommodity stochastic-flow network is constructed to model a 

manufacturing system in which each node stands for a machine station, and each arc stands for a transmission medium 

(shipping machine or conveyor). Four characteristics are considered: 1) both nodes and arcs have multiple possible 

capacities and may fail; 2) each component (arc/node) has both capacity and cost attributes; 3) multicommodity are proceed; 

and 4) the capacity weight varies with arcs, nodes, and types of commodity. We study the possibility that multicommodity 

can be transmitted through this network simultaneously under the budget constraint. Such a possibility is named the system 

reliability. The MP (minimal path) plays the role of describing the relationship among flow vectors and capacity vectors. 

Subsequently, an efficient algorithm in terms of MP is proposed to evaluate the system reliability. 
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1. INTRODUCTION 

 
  Network analysis is a crucial tool used to solve system capacity problems. In a binary-state network without flow through 

it, Abraham (1979), Yarlagadda and Hershey (1991) evaluated the system reliability, the probability that source s 
communicates with sink t, by applying the disjoint event method in terms of minimal paths (MP), where a MP is a path 

whose proper subsets are no longer paths. Note that a MP is different from the so-called minimum path that is a path with 

minimum total length. Aggarwal et al. (1975) proposed a concept that the failure of a node implies the failure of arcs 

incident from it. Then the original network with unreliable nodes can be modified to a conventional network with perfect 

nodes. Extending to a binary-state flow network, each arc’s capacity (the maximum flow passing the arc per unit time) has 

two values, 0 and a positive integer. System capacity is the maximum flow from s to t. Thus, system reliability is the 

probability that system capacity is no less than the demand. The evaluation of network reliability had been shown to be 

NP-hard (Colbourn, 1987). Aggarwal et al. (1982) solved such a reliability problem in terms of MP. 

   In a stochastic-flow network composed of multistate arcs, the system capacity is not a fixed number. Therefore, such a 

network is also multistate. A manufacturing system can be also treated as a stochastic-flow network in which each node 

stands for a machine station and each arc stands for a transmission medium (shipping machine or conveyor). In fact, every 

machine station is combined with several machines, and each machine has either normal or failure state. Each machine 
station has several states, where state k denotes that k machines are normal. Hence, the capacity of each node has several 

values. Without cost attributes, several authors (Xue, 1985; Yeh, 1998) presented algorithms to generate all lower boundary 

points for demand d in terms of MP. The lower boundary point for d is a minimal system state meeting the demand d, 

equivalently, it is a minimal system state such that system capacity equals d. The literatures (Lin, 2001
b
; Yeh, 2001) and 

(Lin, 1998; Yeh, 2005) extended such a reliability problem to unreliable nodes case, and budget constraint case, 

respectively. 

   The max-flow min-cut Theorem (Ford and Fulkerson, 1962) states that the maximum flow from s to t equals the 

minimum capacity among all minimal cuts (MC) where a MC is a cut whose proper subsets are no longer cuts. The 

Theorem indicates that MP and MC are two important approaches to solve network problems. Hence, the authors (Jane, et 

al., 1993; Lin, 2001
a
; Soh and Rai, 2005) utilized MC to generate all upper boundary points for d for evaluating system 

unreliability, the probability that the upper bound of system capacity equals d, for perfect nodes and single-commodity case. 
An upper boundary point for d is a maximal capacity vector exactly meeting the demand d.  

   Moreover, multicommodity, multiple types of commodity, are produced thorough a real-life manufacturing network 

which is called a multicommodity stochastic-flow network. In the past few decades, several authors (Hu, 1963; Rothechild 

and Whinston, 1966; Jarvis, 1969; Ford and Fulkerson, 1974; Held, et al., 1974; Assad, 1978) solved multicommodity 

maximal flow problem to find maximal total flow by assuming the arc is deterministic. The total flow, however, is not 

appropriate to be treated as system capacity, especially in case that different commodity consumes arc capacity differently. 
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For example, as the data shown in Table 1, the total flow in network A is larger than that in network B. Yet, it does not 

imply that network A has the better transmission ability when commodity 2 consumes more capacity than commodity 1 

does.  

 

Table 1. The total flow for two networks 

 

 Network A Network B Capacity weight 

Flow of commodity 1 10 5 2 

Flow of commodity 2 6 10 3 

Sum of the commodity 16 15  

Total capacity consumed 38 (10"2 + 6"3) 40 (5"2 + 10"3)  

 

   A multicommodity stochastic-flow network is constructed with four characteristics: 1) both nodes and arcs have several 

possible capacities; 2) each component (arc/node) has both capacity and cost attributes; 3) multicommodity are proceed; 
and 4) the capacity weight varies with arcs, nodes, and types of commodity. The focused problem is how to evaluate system 

reliability that the system fulfills the multicommodity demand under the budget constraint. For convenience, we first 

concentrate on a Two-commodity Stochastic-Flow Network (TSFN). The remainder of this work is organized as follows. In 

section 2, we discuss the relationship among flow vectors and capacity vectors in terms of MP. System capacity and lower 

boundary points for (d1,d 2;B) are also defined. System reliability, the probability that the system meets the demand (d1,d 2) 

under budget B, can be computed in terms of all lower boundary points for (d1,d 2;B). In section 3, an efficient algorithm 

based on MP is proposed to generate all lower boundary points for (d1,d 2;B). A benchmark example is shown in Section 4 to 

illustrate the proposed algorithm and how system reliability may be computed. The storage and computational time 

complexity are analyzed in Section 6. 

 

2. ASSUMPTIONS AND NOMENCLATURE 

 
Let G(A, Q, M, C, W) be a TSFN where A = {ai|1 # i # n} is the set of arcs, Q = {ai|n + 1 # i # n + q} is the set of nodes, M 

$ (M1, M2, …, Mn + q) with Mi being the maximal capacity of ai, C = { | i = 1, 2, …, n + q, k = 1, 2} with  being 

the cost through ai per commodity k and W = { |i = 1, 2, …, n + q, k = 1, 2} with  being the capacity weight and 

denoting the consumed capacity on ai per commodity k. The current capacity of component ai is denoted by xi, and the 

vector X $ (x1, x2, …, xn + q) is called a capacity vector representing the system state. Without loss of generality, we 

assume that  %  % 1 for each component ai. The network G is required to satisfy the following assumptions. 

1. Two types of commodity are transmitted from s to t. 

2. The current capacity xi takes values from {0, 1, 2, …, Mi}, i = 1, 2, …n + q. 

3. Capacities of different components are statistically independent. 

4. Flow of each type of commodity must satisfy the flow conservation (Ford and Fulkerson, 1962). 

5. Both source and sink have infinite capacity, and are perfect. 

 

2.1 Nomenclature 

&x' the smallest integer such that &x' % x 

(d1,d2) + (d1
’,d2

’): (d1 + d1
’,d2 + d2

’) 

Vector comparisons are made as follows. 

X # Y (x1, x2, …, xn + q) # (y1, y2, …, yn + q): xi # yi for i = 1, 2, …, n + q 

X < Y (x1, x2, …, xn + q) < (y1, y2, …, yn + q): X # Y and xi < yi for at least one i 

(d1,d2) # (d1
’,d2

’): dk # dk
’
 for k = 1, 2 

(d1,d2) < (d1
’,d2

’): (d1,d2) # (d1
’,d2

’) & dk < dk
’
 for at least one k 

 

3. TWO-COMMODITY STOCHASTIC-FLOW NETWORKS 

 
Since the nodes are unreliable, we redefine a path as an ordered sequence of arcs and nodes that connects s and t. MP is also 

redefined as an ordered sequence of arcs and nodes whose proper subsets are no longer paths. Suppose P1, P2, …, Pm are 

MPs. The TSFN is described in terms of capacity vector X = (x1, x2, …, xn + q) and flow vector (F1,F2) where F
1 = 

( ) and F2 = ( ) with  denoting flow of commodity k through Pj, j = 1, 2, …, m, k = 1, 2. Such 
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a flow vector is feasible under X if it satisfies the following condition, 

 # xi for i = 1, 2, ..., n + q. 

… (1) 

 

Inequality (1) says that the total quantity  of capacity on ai consumed by (F1,F2) cannot exceed the 

current capacity xi. For convenience, let (X denote the set of (F1,F2) feasible under X. Similarly, (M is the set of all flow 

vectors. 

   The flow vector (F1,F2) is said to meet both demand and budget constraints if it satisfies constraints (2) – (4), 

 

= dk, k = 1, 2, 
… 

 

 (2) 

 

 # B, 

…  (3) 

 

 # Mi for i = 1, 2, ..., n + q. 

…  (4) 

 

 

The value  is the total transmission cost under (F1,F2). Hence, Equation (2) means that (F1,F2) 

meets the demand constraint, constraint (3) means that (F1,F2) meets the budget constraint, and constraint (4) indicates that 

(F1,F2) ) (M. For convenience, let * be the set of all flow vectors meeting both demand and budget constraints. 

 

3.1 System reliability evaluation 

   System capacity V(X) under X is defined as (d1, d2) if at most (d1, d2) can be proceed through the TSFN. Equivalently, 

system capacity V(X) is (d1, d2) if any demand (d1
’,d2

’) with (d1
’,d2

’) > (d1, d2) cannot be proceed through the TSFN. 

Different from the single-commodity case, system capacity is not certainly unique. For instance in Figure 1, there are 2 

MPs: P1 = {a7, a1, a5, a2, a8} and P2 = {a7, a3, a6, a4, a8}. Set  = 1,  = 3 and Mi = 4 for all components ai. System 

capacity V(X) is (2,2) if ( ) = (1,1,1,1), and also (5,1) if ( ) = (1,1,4,0).  

 

 

 

 

 
 

 

 

 

 

 

 

Figure 1.  A network 

 

 

   The capacity vector X is said to meet both demand (d1, d2) and budget constraints if there exists a (F1,F2) ) (X meeting 

both demand and budget constraints. Let + be the set of such X. System reliability  is thus 

s = a7 t = a8 

a1 

a3 a4 

a2 

 

a5 

a6 
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= Pr{X|X meets both demand and budget constraints}  

= Pr{X|V(X) % (d1, d2) and there exists a (F1,F2) ) (X such that  # B } 

= Pr{+} = , …  (5) 

 

where Pr{X} = Pr{x1} " Pr{x2} " … " Pr{xn + q} by assumption 3 (note that Pr{xi} is the probability that the capacity of ai is 

exact xi). However, a straightforward method to enumerate all X in + is not a wise way if the network size is large. It will 

be more efficient to evaluate  if the minimal capacity vectors in + can be found in advance.  

Definition: The minimal vector in + is defined as a lower boundary point for (d1,d 2;B). Equivalently, X is a lower boundary 

point for (d1,d 2;B) if and only if i) X ) +, and ii) Y , + for any capacity vector Y such that Y < X.  

 

   Suppose there are r lower boundary points for (d1,d 2;B): X1, X2, …, Xr. Let subset Si $ {X|X % Xi}, i = 1, 2, …, r. System 

reliability can be formulated as follows: 

 

= Pr{X|X % Xi for a lower boundary point Xi for (d1,d 2;B)} 

= Pr{S1 - S2 - … - Sr}.  

… (6) 

   It can be calculated by applying several methods such as inclusion-exclusion principal (Griffith, 1980; Hudson and 

Kapur, 1985; Lin, 2001a, 2001b, 2003; Yeh, 2004, 2005; Lin, 2006, 2007a, 2007b), disjoint subsets (Xue, 1985; Lin, 2001a) 

and state-space decomposition (Jane, et al., 1993; Lin, 1998).  
 

3.2 Generate all lower boundary points for (d1,d 2;B) 

The following Theorem shows a necessary condition for a lower boundary point for (d1,d 2;B). 

Theorem 1. Let X be a lower boundary point for (d1,d 2;B). Then there exists an (F1,F2) ) * such that. 

 

xi =  for i = 1, 2, ..., n + q. 

…  (7) 

 

Proof: For each (F1,F2) ) *, constraint (1) have stated that  # xi for i = 1, 2, ..., n + q. Without loss 

of generality, suppose  < x1, then (F1,F2) is feasible under the capacity vector (X + e1) where e1 is a 

(n + q)-tuple vector with 1 at position 1 and 0 at others. It means that (X + e1) ) + which contradicts that X is minimal in +. 

Hence,  = xi for i = 1, 2, ..., n + q. 

Q.E.D. 

For each (F1,F2) ) *, generate the corresponding capacity vector  = (z1, z2, …, zn + q) via zi = 

 for i = 1, 2, ..., n + q. In fact,  meets both demand and budget constraints because (F1,F2) is 

feasible under . We call such  a candidate of lower boundary point for (d1,d 2;B). For convenience, let . = 

{ |(F1,F2) ) *} be the set of all candidates of lower boundary point for (d1,d 2;B). The following Theorem further 

shows that .min $ {X|X is minimal in .} is the set of lower boundary points for (d1,d 2;B). 

Theorem 2. {X|X is a lower boundary point for (d1,d 2;B)} = .min. 

Proof: Firstly, suppose that X is a lower boundary point for (d1,d 2;B) (note that X ) .) but X , .min i.e., there exist a Y ) 

. such that Y < X. Then Y ) +, which contradicts that X is a lower boundary points for (d1,d 2;B). Hence, X ) .min. 

   Conversely, suppose that X ) .min (note that X ) +) but it is not a lower boundary point for (d1,d 2;B). Then there exists 
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a lower boundary point Y for (d1,d 2;B) such that Y < X. Therefore, Y ) . that contradicts that X).min. Hence, X is a lower 

boundary point for (d1,d 2;B).                                                                      Q.E.D. 

 

4. ALGORITHM 

Similar to those algorithms (Xue, 1985; Lin, 1998; Yeh, 1998; Lin, 2001b; Yeh, 2001; Lin, 2003; Yeh, 2005; Lin, 2007a), we 

suppose all MP have been pre-computed. Virtually, MP can be efficiently derived from those algorithms discussed in (Shen, 
1995; Al-Ghanim, 1999; Kobayashi and Yamamoto, 1999). The algorithm proposed by Al-Ghanim (1999) showed an 

approximate linear time response versus the number of nodes. All lower boundary points for (d1,d 2;B) can be generated as 

follows. 

Step 1. v /0, I / !, . / !, .max / !. 
Step 2. Obtain all (F1,F2) satisfying demand, budget, and capacity constraints. 

= dk, k = 1, 2, 
…  (8) 

 

 # B, 

…  (9) 

 

 # Mi for i = 1, 2, ..., n + q. 

…  (10) 

 
Step 3. Transform each (F1,F2) into X = (x1, x2, …, xn + q) via  

xi =  for i = 1, 2, ..., n + q. 

…  (11) 

 

Set v / v + 1, Xv / X, and . / . - Xv. 

 

Step 4. . = {X 1, X 2, …, X v}. 

4.1) for i = 1 to v with i , I 

4.2)  for j = i + 1 to v with j , I 

4.3)    if Xi % Xj, I = I - {i} and go to step 4.6) 

elseif Xj > Xi, I = I - {j} 

4.4)  j = j + 1 

4.5)  X i is a lower boundary point for (d1,d 2;B), and .min / .min - Xi 

4.6) i = i + 1 

4.7) end 

   Equation (11) guarantees that X is a candidate of lower boundary points for (d1,d 2;B). Use the comparison method to 

store the lower boundary points for (d1,d 2;B) into .min. I is used to store the index of X which is not a lower boundary point 

for (d1,d 2;B). If Xi % Xj, then i ) I. If Xj > Xi, then j ) I. 

 

5. AN APPLICATION IN MANUFACTURING SYSTEMS 

 

 

 

 

 

 

 

 

Figure 2. A Benchmark (Soh and Rai, 1991; Yarlagadda and Hershey, 1991) 

 

s = a13 
t = a14 

a1 

a3 
a9 

a4 

a11 

a6 

a8 

a7 

a5 a12 

a2 

a10 
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Table 2. The data of arcs and nodes 

 

Component Capacity Probability   **
  

a1 0* .01 1 2 30 60 
 1 .01     
 2 .01     
 3 .01     
 4 .02     

 5 .94     
a2 0 .01 1 2 60 90 
 1 .01     
 2 .01     
 3 .02     
 4 .02     
 5 .93     

a3 0 .01 1 2 90 120 

 1 .01     
 2 .01     
 3 .01     
 4 .01     
 5 .95     

a4 0 .01 1 2 60 120 
 1 .01     
 2 .02     

 3 .03     
 4 .03     
 5 .90     

a5 0 .01 1 2 30 60 
 1 .01     
 2 .01     
 3 .01     
 4 .02     

 5 .94     
a6 0 .01 1 2 60 90 
 1 .01     
 2 .02     
 3 .02     
 4 .03     
 5 .91     

a7 0 .01 1 2 90 120 
 1 .01     

 2 .01     
 3 .01     
 4 .01     
 5 .95     

a8 0 .01 1 2 60 120 
 1 .01     
 2 .01     
 3 .03     

 4 .03     
 5 .91     

a9 ~ a12 0 .01 1 2 60 90 

 1 .01     
 3 .01     
 5 .01     
 7 .02     
 9 .94     

  *Pr{the capacity of a1 is 0} = 0.01. 

  **US dollars per lot 
 

   We use the benchmark (Soh and Rai, 1991; Yarlagadda and Hershey, 1991) (see Figure 2) modeling a manufacturing 

system to illustrate the proposed resolution procedure. There are 7 MPs: P1 = {a13, a1, a9, a3, a11, a7, a14}, P2 = {a13, a1, a9, 

a3, a11, a6, a12, a8, a14}, P3 = {a13, a1, a9, a4, a12, a8, a14}, P4 = {a13, a1, a9, a4, a12, a6, a11, a7, a14}, P5 = {a13, a2, a10, a5, a12, a8, 



Lin 
 

 288 

a14}, P6 = {a13, a2, a10, a5, a12, a6, a11, a7, a14}, and P7 = {a13, a2, a10, a5, a12, a4, a9, a3, a11, a7, a14}. The data of arcs and 

nodes are shown in Table 2. One lot means 100 homogeneous commodities. Component capacity is measured in terms of 

hours. For example, X11 = 3 denotes that station 11 has 3 hour-capacity in one hour, and  = 2 denotes that one lot of 

commodity 2 consumes 2 hour-capacity through station 11. If demand (d1, d2) is set to be (3 lots, 3 lots) and C = $2450, the 
manager would like to know network reliability R3,3;2450. First, all lower boundary points for (3,3;2450) can be found by the 

following steps. 

Step 1. v =0, I = !, . = !, .max = !. 

Step 2. Obtain all flow vectors (F1,F2) with F1 = ( ) and F2 = ( ) satisfying 

all demand constraint (12), budget constraint (13), and capacity constraint (14), 
 

 = 3, …  (12) 

 = 3,                

 

{30( )+60( )} + 

{60( ) + 90( )} +{90( ) + 120( )} + {60( ) + 

120( )} + {30( ) + 60( )} +{60( ) + 90( )} + 

{90( ) + 

120( )} +{60( ) + 120( )} + 

{60( ) + 90( )} + 

{60( ) + 90( )} + {60( ) + 90( )} + 

{60( ) + 

90( )} # 2450, …  (13) 

 

a1: & ' # 5, …  (14) 

a2: & ' # 5, 

a3: & ' # 5, 

a4: & ' # 5, 

a5: & ' # 5, 

a6: & ' # 5, 

a7: & + ' # 5, 

a8: & ' # 5, 

a9: & ' # 9, 

a10: & ' # 9, 

a11: & ' # 9, 

a12: & ' # 9. 

 

Seven flow vectors (F1,F2) are obtained: (3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0), (2, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0), (2, 0, 0, 0, 

1, 0, 0, 1, 0, 0, 0, 2, 0, 0), (1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 0, 0), (0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 

0, 1, 0, 0) and (0, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 1, 0, 0). The corresponding costs are 2370, 2370, 2340, 2340, 2340, 2310 and 

2430, respectively. 

 

Step 3. For each (F1,F2), generate the capacity vector X = (x1, x2, …, x12) via 
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x1 = & ', 

x2 = & ', 

x3 = & ', 

x4 = & ', 

x5 = & ', 

x6 = & ', …  (15) 

x7 = & + ', 

x8 = & ', 

x9 = & ', 

x10 = & ', 

x11 = & ', 

x12 = & '. 

 

   In fact, each value xi has been calculated by constraint (14) in step 2. We obtain X 1 = (5, 4, 5, 0, 4, 0, 5, 4, 5, 4, 5, 4), X 2 

= (5, 4, 4, 1, 4, 0, 4, 5, 5, 4, 4, 5), X 3 = (4, 5, 4, 0, 5, 0, 4, 5, 4, 5, 4, 5), X 4 = (5, 4, 5, 0, 4, 0, 5, 4, 5, 4, 5, 4), X 5 = (5, 4, 4, 1, 

4, 0, 4, 5, 5, 4, 4, 5), X 6 = (4, 5, 4, 0, 5, 0, 4, 5, 4, 5, 4, 5) and X 7 = (4, 5, 4, 0, 5, 1, 5, 4, 4, 5, 5, 5). So, . = {X1, X2, X3, X4, 

X5, X6, X7}. In total, we have . = {X1, X2, X3, X4, X5, X6, X7}.  

 

Step 4. Check each Xi ) . whether it is a lower boundary point for (3,3; 2450) or not. According to vectors comparisons, 

store Xi into .max if it is the minimal candidate. Otherwise, delete Xi and store the index i into I.  

4.1) i = 1 

4.2)  j = 2 

4.3)   X 1  X 2 and X 2  X 1. I = !. 

4.2)  j = 3 

4.3)   X 1  X 3 and X 3  X 1. I = !. 

4.2)  j = 4 

4.3) X 1 % X 4. X1 is not a minimal vector, so it is not a lower boundary point for (3,3; 2450). I = {1}.  

4.1) i = 2 

4.2)  j = 3 

4.3)   X 2  X 3 and X 3  X 2. I = {1}. 

! 

   The candidates X1, X2, and X3 are deleted since X 1 % X 4, X 2 % X 5, and X 3 % X 6 after comparisons. Thus, .max = {X 4, 

X 5, X 6, X 7} is the set of all lower boundary points for (3,3; 2450). To compute system reliability R3,3;2450, let S1 = {X|X % 

X4}, S2 = {X|X % X5}, S3 = {X|X % X6} and S4 = {X|X % X7}. Hence, R3,3;2450 = Pr{S1 - S2 - S3 - S4} = 0.676618532 can be 

calculated by inclusion-exclusion principal. Note that Pr{Y % X} = Pr{y1 % x1} " Pr{y2 % x2} " … " Pr{yn % xn + q} if Y = (y1, 

y2, …, yn + q). In particular, inclusion-exclusion principal states that Pr{S1 - S2 - …- Sr} = 

 –  –  – …– (–1)rPr{S1 0 S2 0 …0 Sr}.The probability that the 

system processes (3 lots, 3 lots) under the budget $2450 is 0.676618532.  

 

6. COMPLEXITY ANALYSIS 

 

The number of feasible solutions of = d1 and equation (8) are  and , 

respectively. The number of solutions to constraints (8) – (10) is bounded by . Similarly, the 
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number of X transformed according to equation (11) is bounded by . Hence, the algorithm needs 

O((n + q) ) storage space in the worst case. 

Each solution of equation (8) needs O(m) time to test whether it satisfies  # Mi for each i and 

O(m(n + q)) time for all i. Hence, it takes O(m(n + q) ) time to obtain all solutions to constraints (8) 

- (10) in the worst case. Since the number  has been processed in step 2, it does not need any time to 

transform (F1,F2) into X via equation (11). In the worst case, the number of elements of + is , 

and so it takes O((n + q) ) time to test an element of + whether it is minimal in + and O((n + 

q) ) time for all elements. Hence, the computational time complexity of the algorithm in the worst 

case is O((n + q) ) = O(m(n + q) ) + O((n + q) 

). Note that m is less than . The computational complexity of the 

proposed algorithm is reflected by the number of MPs, number of nodes and edges, and the demand. 

 

7. DISCUSSION 

 
   The system reliability can be treated as a performance index to measure the capability or quality level for a 

supply-demand system. Based on the properties of MP, an efficient algorithm to generate all lower boundary points for 

(d1,d 2;B) is proposed. System reliability can subsequently be calculated in terms of lower boundary points for (d1,d 2;B) by 

applying inclusion-exclusion principal. We can extend the proposed resolution procedure to multicommodity (more than 

two types of commodity) case easily. In our model the transmission cost  is not assumed to be linear in . For the 

case that the transmission cost is only charged in terms of consumed capacity,  is linear in . However, this condition 

is a special case of the proposed model. 

   The method discussed in Lin (2001b) studied the system reliability problem for single-commodity and unreliable nodes 

case but without any cost attribute. If we let  be constant for i, d = d1 + d2, B be unlimited, and treat the 

original problem (in TSFN) as a single-commodity case, then Lin’s approach may be applied to evaluate  (i.e., 

Rd,0;1). However, the following illustration indicates that the TSFN model cannot be simplified to a single-commodity 

model. We use the network of Figure 2 to illustrate the difference between them. If  = 1,  = 3 and (d1, d2) = (1, 1), 

then d = 4. The capacity vector X = (2, 2, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 4, 4) permits flow d = 4 pass through P1 and P5. But it is 

obvious that the same capacity vector X cannot permit (d1, d2) = (1, 1) since second type of commodity can pass through 

neither P1 nor P5. 
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