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The artificial neural network (ANN) has a proven reputation of accurately modeling the interacting relationships in a 
complex non-linear system. However, an ANN model is often considered a “black-box” in the sense that its estimates 
appear incomprehensible. This limitation is alleviated by using knowledge extraction techniques and algorithms. Better 
understanding of these relationships is significantly important to the oil industry, where the factors that affect corrosion are 
not well understood. To provide insight, this paper presents a number of different techniques to extract knowledge from an 
ANN trained with a CO2 corrosion dataset. These techniques include Network Interpretation Diagrams, Garson’s 
Algorithm, Sensitivity Analysis, Family of Curves and Surfaces, and TREPAN-Plus. From a knowledge-based perspective, 
these methods can provide the oil industry with the ability to determine the role of input variables in predicting corrosion 
inhibition. The limitations and advantages of each of these techniques are also discussed. 
 
Significance: In order for the oil industry to understand the causes of corrosion in gas pipelines, this paper reviews several 

methods to extract knowledge from an artificial neural network (ANN), a machine-learning scheme. Carbon 
dioxide (CO2) corrosion is a complex process involving several factors and through modeling, insights can 
be gained into variable interrelationships of the underlying process. 
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1. INTRODUCTION 
 
   The majority of oil and gas pipelines are made of carbon steel. Carbon steel, like other materials in nature, deteriorates 
over time. In a metallic pipeline, this deterioration usually occurs due to damaging effects from the surrounding 
environment. For carbon steel, one of the most dominant forms of deterioration is corrosion. Corrosion reduces the amount 
of metal in the pipe’s cross-sectional wall thickness. As the pipe ages, it becomes less safe and less reliable. It is extremely 
important for oil and gas companies to monitor the quality of the pipe before potentially hazardous affects arise from a 
defective pipe. Throughout the world, companies are confronted with the expensive, time consuming, and potentially 
dangerous process of repairing or replacing damaged pipelines. Thus, it is important for pipeline operators to have an 
accurate and comprehensible model that predicts the remaining life of the section of pipe.  
   Carbon steel is vulnerable to corrosion from exposure to CO2 due to electrochemical processes where ions dissolve at 
anodes and hydrogen evolves at the cathode (Nesic et al., 1995). This chemical reaction results in the formation of solid 
FeCO3 films; these films can be protective or non-protective, depending on formation conditions. The presence of CO2 acts 
as a catalyst increasing the hydrogen evolution, thereby increasing the corrosion rate of carbon steel in aqueous solution. 
Some researchers assume that H2CO3 either serves as an extra source of H+ ions or is reduced directly (de Waard and 
Milliams, 1975, Gray et al., 1989). It is also assumed that both these reactions are independent of each other (Nesic et al., 
1995). Particular attention is drawn to the recent reviews of the main design considerations European Federation of 
Corrosion, 1997) and prediction techniques related to CO2 corrosion compiled by the (European Federation of Corrosion 
(European Federation of Corrosion, 1994). The role of crude oil in CO2 corrosion has gained special attention in the last few 
years due to its significance when predicting or modeling corrosion rates. Efird (1991) was one of the first to identify the 
importance of testing the effect of crude oils in order to predict corrosion rates. Hernández et al., (2002) presented how 
certain variables in the composition of crude oil would influence the inhibition of corrosion.  
   Repairing or replacing a section of pipeline in the oil and gas industry is prohibitive due to the expense and time required. 
Therefore, a model that indicates the significance of factors related to the corrosion of a steel pipeline is paramount to the 
oil industry. A model should account for the particular type of oil flowing into the pipeline. This research is devoted to 
using an artificial neural network (ANN) as an artificial intelligence approach for modeling the corrosion rate of carbon 
steel and extends the analysis to yield comprehensible models by using rule extraction procedures. 
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2. LITERATURE REVIEW 
 
   For years, researchers have presented various approaches detailing the process of corrosion. Corrosion prediction has 
been identified as a key approach in utilizing the knowledge of the corrosion process and applying it to industrial corrosion 
related problems. Many corrosion models have been developed over the years, which are briefly outlined in this section. 
These models can be categorized into three main categories: empirical, semi-empirical and mechanistic models, based upon 
how firmly they are grounded in theory. It is important to note that some of these models are analytically complex and one 
would need a thorough understanding of the thermodynamic and electro-chemical processes occurring in corrosion in order 
to comprehend their meaning.  
   It has been observed through empirical models that the CO2 corrosion rates in operational crude oil pipelines are much 
lower than those obtained under laboratory conditions (where crude oil was not used or where synthetic crude oils were 
used) (Nesic et al., 1995). The semi-empirical models, typically based on the mechanistic approach, are the “worst-case” 
models because they do not take into consideration the presence of protective surface films, corrosion inhibitors, 
hydrocarbons, different steel types, high pressure and other realistic conditions found in the oil and gas industry (Nesic and 
Vrhovac 1997). In mechanistic models, CO2 corrosion is considered as a complex phenomenon where electrochemical, 
transport, and chemical processes occur simultaneously. Due to the complexity of the process, there is no single 
mechanistic approach that is able to model all of these complexities. Although some significant advances in corrosion 
control, the best practice is still to blend or neutralize crude oil. Better understanding of the corrosion mechanism in the 
presence of naphthenic acids is necessary.  
   Sinha and Pandey (2002) proposed a fuzzy-logic based ANN for reliability assessment of oil and gas pipelines. This 
model was trained with field observation data collected using magnetic flux leakage (MFL) tools in order to characterize 
the actual condition of aging pipelines vulnerable to metal loss corrosion. The object of this work was to develop a 
simulation-based probabilistic neural network model to estimate the probability of failure of aging pipelines vulnerable to 
corrosion. An expert system of a crude oil distillation unit (CDU) was developed to carry out the process of optimization on 
maximizing the oil production rate under the required oil product qualities (Liau et al., 2004). The expert system was 
established using the expertise of a practical CDU operating system provided by a group of experienced engineers. The 
input operating variables of the CDU system were properties of crude oil and manipulated variables while the system 
output variables were defined as oil product qualities.  
   Crude oil blending is an important aspect in the petroleum refining industry. Many blend automation systems use real-
time optimizer (RTO), which apply current process information in order to update the model and predict the optimal 
operating policy based on the on-line analyzers. In certain situations, oil fields cannot apply these analyzers. Yu and 
Morales (2005) proposed an off-line optimization technique to overcome the main drawback of RTO. Historical data was 
used to approximate the output of the on-line analyzers with an ANN, and then the desired optimal inlet flow rates were 
calculated by the optimization technique via the neural model. After off-line optimization, the inlet flow rates are used for 
on-line control. 
   In recent years, the field of artificial intelligence has been explored for modeling the corrosion process. This leads to the 
necessity of developing a more robust model that is able to predict the corrosion rate with a high rate of accuracy even in 
the presence of a limited noisy data set. ANNs are being recognized as a powerful and general technique for machine 
learning because of their non-linear modeling abilities (Reed and Marks, 1998). ANNs have been one of the most 
promising approaches to the corrosion modeling process as demonstrated by Hernández et al., (2006). This study evaluated 
the usefulness of predicting corrosion inhibition by using an ANN. 
 
3. INDUSTRY APPLICATION: CO2 CORROSION MODEL 
 
   The corrosion dataset is a collection of the characteristic composition of fifteen Venezuelan crude oils used to predict the 
ability of a crude oil to offer corrosion inhibition in a CO2 environment (Hernández et al., 2002). These attributes include 
measurements of American Petroleum Institute (API) density, sulphur, total nitrogen, total acid number (TAN), saturates, 
aromatics, resins, asphaltenes, vanadium, nickel and percentage of crude oil. Small sample sizes make it challenging to 
derive any mathematical model based on experimental data. This is especially true for traditional statistical models, which 
are typically based on least squares regression.  
   The API employs many of the attributes found in the Venezuelan crude oil dataset to grade crude oil in its scale. Crude oil 
is graded based upon the amount of impurities found in samples, with sulphur and nitrogen content in addition to the 
content of heavy metals, such as vanadium and nickel. The total acid number (TAN) indicates how much oxidation has 
taken place in a fluid. An in depth description of the test conditions used to determine these oil characteristics can be found 
in Hernández et al., (2002). These attributes are used to predict the inhibiting capacity and hence the corrosion rate given by 
Equation 1. 
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   NeuroSolutions, software developed by NeuroDimensions Inc. (2006), was used to experiment with different neural 
network models for the datasets described above. Various network types such as multi-layer perceptron and generalized 
feed forward networks were tested to obtain the best neural network model. Due to its limited size, the corrosion dataset 
was divided into 70%, 15%, and 15% sections for training, cross-validation, and testing respectively in order to provide for 
more training data. An 11-5-3-1 MLP network utilizing a hyperbolic tangent function achieved the best accuracy for the 
corrosion model. This model was trained for 20,000 epochs, which resulted in a correlation co-efficient (r) value of 0.942.  
   In addition to the regression problem with continuous output data, a different model based on grouping the output into 
classes was needed to create decision trees. The continuous output ranges were transformed into a classification problem. 
The output (% inhibition) was divided into five classes as shown in Table 1. 
 

Table 1. Corrosion Class labels 
 

%Inhibition Class 

0.75-0.849 Cl1 

0.85-0.889 Cl2 

0.89-0.949 Cl3 
0.95-0.979 Cl4 
0.98 and 

above Cl5 

 
4. ANN KNOWLEDGE EXTRACTION 
 
   A key shortcoming in modeling complex systems by ANN is the lack of transparency in their estimates, causing the 
networks to act like ‘black-boxes’ by not providing information on the formation of an estimate. In addition, no indication 
is provided on the importance of the variables being used to model the system. However, the network itself contains 
valuable information such as the relationship between several interrelated indicators. By exploring these relationships 
through machine learning techniques, it is possible to capture predictive knowledge regarding network relationships to one 
another and the output. This is essential in understanding the basis of the decisions as this type of computer support system 
is often used in critical applications and verifications of decisions a requirement. Many important knowledge based systems 
have been developed and successfully applied to diverse databases, such as speech recognition, game playing, medical 
diagnosis, financial forecasting, and industrial control (Mitchell, 1997). Usually these models are difficult to understand 
because processing in a neural network occurs at the sub-symbolic level as numerical estimation and manipulation of 
network parameters. An ANN captures task-relevant knowledge as part of its training regimen. The non-linear mapping of 
an ANN’s knowledge is encoded in terms of the architecture, transfer functions, weights, and biases. The knowledge 
represents the hypothesis learned by the network. 
 
4.1. Network Interpretation Diagram 
   A visual representation method for the network and its connection weights was developed by Özesmi & Özesmi (1999). 
This visual method is termed Neural Interpretation Diagrams (NID), due to the underlying methodology representing the 
connection weights in the form of line joining neurons in each of the layers in the network. Studying of magnitude of 
connection weights helps in predicting the variable contribution as well as understanding the interactions between the input 
variables (Aoki and Komatsu, 1999, Chen and Ware, 1999). Olden and Jackson (2002) explain the concept as when 
positive (or negative) connection weights transfer from input-hidden to hidden-output layer in an MLP, a resultant 
positive/excitatory effect of input variables is seen on the network output. Whereas a negative/inhibitory effect is projected 
when opposing connection, resulting in a weights flow from input-hidden to hidden-output layer. The product of the two 
connection weights subsequently passing between the layers of the MLP determines the final effect of the input variable on 
the output. The results of NID on the corrosion system are shown in Figure 1. 
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Figure 1. NID for 11-5-3-1 MLP Network 
 
   The NID indicates that there are four significant variables in the model, percentage crude oil (%Crude Oil), V, Resins and 
Aromatics. These four attributes have large positive or negative weights to/from the first and second hidden layer of the 
network. If a bold line cannot be traced from an input to an output, it is difficult to identify the actual significance of the 
input, for example Ni. The advantage of this method is in it being very easy to implement in order to acquire some basic 
information about the modeled system. Although an input’s value is normalized before weights in the system are assigned, 
the process elements are non-linear. Since users determine values of weights that indicate the line thicknesses, the results 
can be very subjective. 
 
4.2. Garson’s Algorithm 
   Garson’s Algorithm is a neural network process which provides information in the form of connection weights. The input 
from each variable is encoded into the network model as a weight, with the contribution of each of these variables to the 
output mainly dependent on the magnitude and direction of these connection weights (Olden & Jackson 2000) The mapping 
between the input variables and the predicted response generated in the case of a MLP, is a bi-level process of information 
flow involving weight transfer from input to hidden and then from hidden to output layer.  
 

 
Figure 2. Results of Garson’s Algorithm Showing Relative Importance of Input Variables. 
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Garson (1991) formulated an algorithm that calculated the relative importance of each of the input variable in a given 
network. Goh (1995) later proposed further enhancements to this algorithm. The result of Garson’s Algorithm applied to 
the corrosion system is shown in Figure 2. 
In this method, the %Crude Oil and Ni are considerably important in the corrosion system. However, several other factors 
appear significant including; Total Nitrogen, Resins, and Asphaltenes, which are all approximately equal in weight. 
Dynamically, this methodology does not offer any indication as to what happens to the output of the network when 
different levels of the input parameters change. It doesn’t indicate if the effect of one parameter is beneficial or detrimental. 
However, it does reduce the amount of user bias that the NID introduces to the result. Again, it does not tell much about the 
inhibition other than the fact that %crude oil and Ni are important.  
 
4.3. Sensitivity Analysis 
   Another approach used in extracting knowledge from ANNs is Sensitivity Analysis, which attempts to model the 
interaction of various input factors (Recknagel et al., 1997). Sensitivity analysis is a method used to extract cause and affect 
relationships between input and output variables. Sensitivity analysis also provides feedback as to which input variables are 
the most significant relative to other input variables. Based on this analysis, insignificant variables can be removed from the 
ANN, which would reduce the size, complexity, and training times. However, this would remove the impact and 
relationships that the input variable has to the output and other input variables. Figure 3a displays the sample results of 
sensitivity analysis to the corrosion system. Figure 3b displays an individual response to the input variable, %Inhibition, to 
an input variable, %Crude Oil. According to this test an increase in %crude oil will cause an increase in the inhibiting 
capacity (see Figure 3b), and this trend was clearly demonstrated in the experimental results. 
 
 

 
 
 

Figure 3. a) Input Sensitivity Results b) Individual Sensitivity Response. 
 
   The results of the sensitivity analysis identified four key input attributes that are important to the corrosion system such as 
Ni, resins, %Crude oil and V. In addition, the variables asphaltenes and aromatics are close behind the top four sensitive 
variables. It should be noted that these results differ from the NID and Garson’s Algorithm. The NID does not necessarily 
identify Ni as a significant variable. In comparison, the Garson’s algorithm does not indicate resins as being as significant 
in comparison to other input variables. This may not be a misleading result since NID and Garson’s Algorithm do not 
encompass interactions with other input variables. However, sensitivity analysis requires that all input parameters, aside 
from the ones under analysis, be locked to their mean value. This result might not correspond with the result from the 
physical system due to the impracticality of holding operational values to their means. 
 
4.4. Family of Surfaces 
   Sensitivity analysis can be extended to investigate a family of surfaces based upon knowledge obtained by training a 
neural network (Young & Weckman, 2007).  A combination of input variables can be changed over a range, and the 
response of the output, %Inhibition, can be observed. To generate a surface response of the %Inhibition, each input value 
was held at its average value except the values of Ni and resins. Ni and resins inputs were then varied from their sample 
minimum to their sample maximum. Figure 4 illustrates that as resins decrease in the system the total %Inhibition also 
decreases while as Ni decrease, the % Inhibition will increase. 
   There are two forms of family of surfaces in discussed in this paper. The first is shown in Figure 4. This type of surface is 
essentially the same as the relationships that a sensitivity analysis would show with one exception. In this 3d surface, 2 
inputs are varied and the change of a single variable is observed in output, which differs from the sensitivity results where 
only 1 input was varied, while the change in output was observed. This is a more accurate representation of the 
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relationships that the ANN is using for its estimation. This is because it is highly unlikely that attributes can co-exist at their 
sample average. For example, input attributes are usually correlated. If one attribute increase, it is very likely that another 
attribute will change as well. Thus, the surface explains the output characteristics of the model when multiple inputs are 
varied. If a highly accurate model can be obtained through an ANN, one can assume that the output surfaces are mimicking 
the true behavior of the system, which could be used to better understand the underlying system behavior.   
 
 

 
 
 

Figure 4. 3D Surface Relationship for Ni, resins, and %Inhibition 
 
   Although this technique is very useful to understanding the neural network models, it is not limited to only investigating a 
system’s response when input values are varied. Output values can be varied over a specified range. Statistical optimization 
techniques, such as the SIMPLEX method, can be utilized to generate additional surfaces by solving for a constant input 
value. Therefore, the optimization condition is to minimize error while not allowing input parameters to exceed the 
normalization limits.  
   Figure 5a shows the effects of varying sensitive values (resins) and the output parameter %Inhibition. The idea of varying 
an output value in order to solve for an input variable often leads to the development of system optimization. In this 
particular case, if a high %Inhibition is desired, the interaction of Ni and resins can be determined over a practical range. 
Figure 5b is also a point of emphasis in this case because it is important to look at the error produced from the solved input 
value. The particular portion of the surface where the error is significant, this region cannot be trusted (high values or resins 
and low values of %inhibition. This implies that the value of resins could not be adjusted in such a way where the absolute 
percent error could be reduced to zero. In addition, this result insinuates that the neural network should be trained with 
more data in the failing regions (does not understand the system) or the combination of inputs are not feasible at this 
boundary. If errors of this nature occur, the range of the varied parameters can be adjusted to a level where the surface can 
be trusted.  
 

 
 
 

Figure 5. a) 3D Surface Relationship for %Inhibition, Ni, and Resins b) Abs. %Error of Surface 
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   Generating surface relationships has a benefit over the standard sensitivity analysis method. This is because it provides 
the user with more flexibility and power to determine how the relationships are determined. Users can view complex 
system interaction and can determine the range in which attributes should be varied. Sensitivity analysis also requires non-
changing variables to be held to their sample averages. In some cases, the relationship determined through this method may 
not represent the system accurately. This is because it may not be feasible for a system to exist where all of its attributes are 
held to the sample mean. Therefore, when users generate surface relationships through this method, they have full control 
of how the response is generated. This type of analysis is not limited to merely investigating three variables, but can be 
employed to investigate a single response over two or more variables. Surfaces can be generated to understand the physical 
phenomena being modeled. If some of the relations modeled by a neural network are known, this type of analysis can be 
used to provide evidence of correct system modeling.  
   This is an example of the second kind of surface. This surface is very different from the previous surface. This surface 
can be thought of as a solution space, where the solution space exists inside the surface. For example, a high inhibition is 
desired. If one desires an inhibition level of 0.8 to 1.0, one might ask what values other sensitive inputs must be in order to 
obtain this high inhibition. Therefore, to generate this surface, the %inhibition is varied for high desired values as well as 
one other input (resin). Once this range is determined, an optimization technique is used to calculate the necessary value 
that NI must be in order to produce the high level of inhibition. Thus, any value underneath the surface, or solution space, 
will give you a resulting %inhibition of 0.8 to 1.0. In other words, if a combination of Ni and resins are picked and plotted 
on the surface, if the points are inside the solution space, the desired inhibition level will be achieved. In this case, these 
surfaces can be used as design considerations. The other note here is the second figure showing abs %error. Since an 
optimization strategy is being utilized, a combination of inputs might not be feasible to generate the desired inhibition. The 
model itself is bounded by “allowable” combinations of input values based on the sample data. A constraint was placed on 
the normalization values. Thus, since the normalization used a large portion of sample values, it is assumed that an input 
could not lie far outside the limits of +/- 1.2. Thus, a 20% tolerance is allowed for the solved values. The error graph would 
reflect how much confidence could be placed on the solution space. If there is a high error, the solution space could result 
in a lower or high value of inhibition than what was desired. So now the question becomes, could these surfaces help you 
better understand the underlying system behavior, or could it be used as a potential tool for design? 
 
4.5. Decision Trees: Trepan 
   Decision trees classify data through recursive partitioning of the data set into mutually exclusive subsets which best 
explain the variation in the dependent variable under observation (Biggs et al., 1991, Liepins et al., 1990).  The TREPAN 
algorithm developed by Craven (1996), is a novel rule-extraction algorithms that mimics the behavior of a neural network. 
Given a trained neural network, TREPAN extracts decision trees that provide a close approximation to the function 
represented by the network, however it could also be applied to a wide variety of non-neural network based learning models 
(Craven and Shavlik, 1996). An extension of the original algorithm was performed to enhance the TREPAN software in 
order to handle a wider variety of problems. TREPAN currently works with multi-class classification problems and two 
class regression problems. The aim is to be able to work with classification as well as regression problems with multiple 
classes. The corrosion dataset was analyzed with multiple classes using the modified TREPAN algorithm called TREPAN-
Plus. The result for a TREPAN run is illustrated in Figures 6.  

 
 

Figure 6. Corrosion: TREPAN Decision Tree 
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Table 2. Rules Extracted From the Trepan Decision Tree 
 

Rule 
No. Rule Text Class Label 

1 

If ANY 3 of {Saturates <= 0.476, resins <= -0.728, TAN <= -0.0815, Crude 
oil <= -0.126, API > -0.276, Crude oil <= -0.684} and ANY 2 of {S <= 
0.0139, Aromatics > 0.0589, nitrogen <= -0.506} and Saturates <= 0.557 and 
Crude oil <= -0.684  
  

CL1 

2 
IF NOT 2 of {S <= 0.0139, Aromatics > 0.0589, nitrogen <= -
0.506} and Crude oil <= -0.126 and S <= 0.739  
  

CL1 

 
   The first rule implies that “If ANY 3 of {Saturates <= 0.476 or resins <= -0.728 or TAN <= -0.0815 or Crude oil <= -
0.126 or API > -0.276 or Crude oil <= -0.684} and ANY 2 of {S <= 0.0139 or Aromatics > 0.0589 or nitrogen <= -0.506} 
and Saturates <= 0.557 and Crude oil <= -0.684 the class label is CL1” i.e. the predicted inhibition rate would be in range 
(0.75 - 0.849) as per Table 1. Some of the disadvantages for creating decision trees with the TREPAN algorithm include a 
potential loss of forecast accuracy. Some reasons for this reduction can be attributable to the bias nature of constructing 
class ranges. In this analysis, the best decision tree model produced an overall accuracy in predicting the correct class of 
85.71%. 
   A possible advantage from the use of a decision tree on the corrosion study case is that it could be used to define risk 
levels, defined here as class levels, so that the user can understand the degree of protection that could be expected from a 
crude sample and also what could make it more or less corrosive. 
   From a knowledge-based perspective, these methods can provide the oil industry with a tool to predict corrosion 
inhibition. However the ability to determine the role of each variable in predicting corrosion inhibition needs careful 
analysis as different methodologies conduce to different conclusions. While the effect of increased %crude oil in reducing 
inhibition is well understood and clearly demonstrated in experiments, the effect of variables such as resins and Vanadium 
is still not well understood, and while most of these techniques indicated an effect, the degree and nature (increasing or 
decreasing % inhibition) of the effect vary significantly. This may be a consequence of the tight relationship that exists 
among some of these variables, some of which were identified by the authors in a previous paper (reference to NACE 
05554) 

• Increased amounts of aromatic compound result in an increase in density (API density) whereas an increase in 
saturated compounds results in a decrease in API density.  

• Lower API crude oils tend to have higher sulfur contents (%S), asphalt content (asphaltenes and resins), and are 
associated to higher nitrogen contents. 

• As % sulfur increases so does nickel and both Ni and V tend to decrease as API increases. 
   Carbon dioxide corrosion is a complex mechanism, and even more complex is the nature of crude oils. These highly 
correlated variables make it hard for the neural network to pick up sensitivities On the other hand all variables evaluated 
will be affecting inhibition to some degree so all of them would have to be measured and further analysis will have to be 
performed to see if these co-variations can be systematically predicted. 
 
5. CONCLUSIONS 
 
   This paper explored a number of knowledge extraction techniques for ANNs, from basic to complex algorithms and the 
quality of information gained from these techniques. It was demonstrated how these techniques can be used to extract 
various levels of knowledge from various ANNs that were used to model a complex system such as corrosion. Methods 
were explored that would allow the investigator to go beyond the ANN’s limitations typically referred to as a “black box.” 
By extracting knowledge to a comprehensible form, further relationships between input and output variables can be 
explored and can be used to support a generation of a more usable prediction tool while enhancing the understanding of the 
actual system. Future research in this area will take the next step in the development of a knowledge-based model in order 
to form the initial mechanistic model.  
   In addition, this paper introduced a new technique named ‘Family of Surfaces’. This technique allows a combination of 
input variables to be changed over a range, and the response of the output can be observed. This technique is not limited to 
only investigating a system’s response but the output values can also be varied over a specified range. Statistical 
optimization techniques can be utilized in order to generate additional surfaces by solving for input values. If some of the 
relations being modeled by a neural network are known, this type of analysis can be used to provide evidence that the 
network is modeling the system correctly. This type of analysis could be run over several random samples while recording 
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the impact of values with respect other values being a sample value rather than a mean value. This methodology could 
generate a more reliable and realistic physical sensitivity analysis, currently under development by the authors.  
   Lastly, this paper also introduced an extension of the decision tree algorithm ‘TREPAN’. This extension allows the 
analyst the ability to convert continuous output problems into a multiclass decision tree. The decision tree then establishes 
knowledge extraction in the form of rules. An ANN model with knowledge extraction can better understand complex 
systems and relationships while presenting them in a more comprehensible state. The combination of ANN and Knowledge 
extraction can be an extremely powerful tool, in both predicting and gaining insight on how a complex systems behaves in 
this research have the potential to increase knowledge of the physical relationships and prediction accuracy. 
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