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Dispatching and routing are fundamental operational decisions in automated material-handling systems. Numerous studies 

have been conducted on these two operational decisions, with more focus being recently made on intelligent routing decisions. 

However, comparative studies between the effects of dispatching and routing methods have not been reported so far. In this 

study, we have investigated three dispatching and three routing algorithms and measured their impacts using a simulation 

model for an automated guided vehicle (AGV) system designed for a real-world production line, in which a grid-type material 

flow layout is used, and the AGVs need to stop before changing their direction of movement. Two routing algorithms are 

developed in this study. Simulation experiments revealed that both dispatching and routing algorithms affect the performance 

of the AGV system, although dispatching methods showed a more significant impact. Good dispatching and routing 

algorithms are mandatory to improve the overall performance of AGV systems. 
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1. INTRODUCTION 
 

Automated material handling systems (AMHS) have been widely used in many areas and are recognized as important 

components of logistics systems (Chawla et al., 2019). AMHS makes use of different types of vehicles, such as automated 

guided vehicles (AGV), which move along marked lines. Additional examples include rail-guided vehicles that move along 

a straight fixed path, overhead host transport (OHT) that moves along a rail attached to the ceiling, and continuous flow 

transport that uses a conveyor (Nazzal and Bonder, 1998). In this study, we have treated the case of AGVs, although the 

findings are seemingly applicable to other AMHS. 

Design and operational control issues are the two main problems in operating an AGV system efficiently. Design issues 

include guide path design, positioning of loading/unloading points and charging stations, and determination of the appropriate 

number of vehicles. Operational control issues include dispatching rules, path planning (routing), traffic management, and 

idle AGV positioning (Ganesharajah et al., 1998). In this study, we focus on dispatching and routing problems, which are 

fundamental operational decisions in many AMHS, as illustrated in Figure 1. When a load delivery request occurs in an AGV 

system, it is assigned by a dispatching rule or algorithm. The assigned AGV then moves to the loading point by choosing a 

path (or route) determined by a routing rule or algorithm. Arriving at the loading point, the AGV takes the load and moves 

to the unloading point destination determined by the same routing algorithm. 

Owing to their fundamental importance, many studies have been conducted thus far on the investigation of dispatching 

and routing. With the novel advances in artificial intelligence, more interest is being drawn on intelligent routing decisions. 

However, studies comparing the effects of dispatching and routing methods are still lacking. In this study, we investigated 

three dispatching and three routing algorithms and measured their impacts using a simulation model for an AGV system. The 

three dispatching algorithms are the closest vehicle selection rule, reassignment-based dispatching rule (RBD), and Hungarian 

algorithm-based OHT reassignment (HABOR). The last two algorithms were proposed by the second author of this paper 

(Kim et al., 2007; Kim et al., 2009). The three routing algorithms tested here are the shortest route selection rule, dynamic 

and advanced dynamic A* algorithms. The A* algorithm is a well-known shortest-path search algorithm for one-to-one paths. 

In the dynamic A* algorithm, the route of each AGV is dynamically changed based on the A* algorithm using estimated travel 
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times between nodes, which are updated by the movements of the AGVs and exponential smoothing. However, the algorithm 

had some weaknesses when the travel times were not updated properly. Those weaknesses are described in Section 4.2.2. 

Thus, we developed a third routing algorithm in which the estimated travel times were refreshed periodically. 

We conducted simulation experiments using AutoMod on a production line, in which AGVs must stop and turn when 

they change their moving direction. Even though simulations revealed that both dispatching and routing algorithms affect the 

performance of the AGV system, dispatching methods were found to have a more significant impact. In fact, the application 

of the dispatching rule results in a more effective reduction in the total lead time compared to the case of routing algorithms. 

The remainder of this paper is organized as follows. In Section 2, a literature review on vehicle dispatching and routing 

in AGV systems is presented. The simulation environment is described in Section 3. In Section 4, three dispatching and 

routing algorithms are presented. The simulation results are presented in Section 5. Finally, the conclusions are presented in 

Section 6. 

 

 
 

Figure 1. Dispatching and Routing Problems in AGV 

 

2. LITERATURE REVIEW 

 

Routing and dispatching are key issues directly related to the productivity of AMHS. Numerous studies have been conducted 

so far on the two operational decisions, with a more recent focus on intelligent routing decisions. However, to our knowledge, 

very few studies have applied good dispatching and routing algorithms together, and no study has compared their impacts. In 

Table 1, we present a summarized overview of previously reported relevant studies investigating routing and dispatching 

problems. Cited works were identified based on the subject they addressed, such as the dispatching problem, routing problem, 

dynamically changed routes, considered grid-type layout, guided path line, and vehicle turn time. In the last column, “Vehicle 

turn time” refers to the situations where the vehicle must stop before changing its direction. Thus, it needs deceleration before 

and acceleration after turning, and its turn time must be considered explicitly. Some studies have considered the turning time 

when the shortest time paths are searched. 

Various routing algorithms have been proposed in the literature. Tuncer and Yildirim (2012) proposed a genetic 

algorithm (GA). Zhao and Fu (2012) and Dai et al. (2019) proposed ant colony optimization algorithms, and Tang, Zhu and 

Luo (2016) proposed particle swarm optimization. Recently, artificial intelligence models, including deep reinforcement 

learning (Raajan et al., 2020) and Q(λ) learning (Hwang and Jang, 2020), have been proposed. 

Bartlett et al. (2014) proposed a congestion-aware dynamic-routing algorithm. To consider congestion in an AMHS, 

their algorithm set edge weights representing the estimated travel time and rerouted vehicles based on these updated edge 

weights. When a vehicle completes its movement over the corresponding path segment, the edge weight is updated using 

exponential smoothing. Their routing algorithm outperformed a distance-based static routing algorithm. Lee et al. (2018) 

developed a similar shortest-time routing method that uses edge weights to reflect experienced congestion. The weight value 

of an edge is updated with the average speed of the vehicles, and the edge weight value is calculated by a distance-based cost 

multiplied by a congestion-based penalty factor. 

The production line motivated by this study has a grid-type layout and requires the AGVs to stop before changing their 

direction of movement. From the literature, we found two studies that explicitly considered the vehicle turn time and reflected 

it in the routing decision. Fransen et al. (2020) applied turn penalties to grid-based AGV. Fransen and Eekelen (2021) 

considered a grid layout with turning costs and proposed an improved A* algorithm. 

Although dispatching is very important and has a high potential for improving the productivity of an AMHS, recent 

studies on dispatching are rare. Ganesharajah, Hall, and Sriskandarajah (1998) summarized various dispatching rules. Kim et 

al. (2007) proposed a single reassignment at a time algorithm, RBD, and Kim et al. (2009) proposed a multiple reassignment 

at a time algorithm, HABOR. In this study, we implemented these two algorithms, the details of which are described in 

Section 4. 
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Table 1. Overview of Algorithms Reported in the Literature with Associated Characteristics.  

 

Reference Dispatching Routing Algorithm 
Dynamic 

routing 

Grid 

type 

Guided 

line 

Vehicle 

turn 

time 

Bae and Chung, 2019  o Primal-dual heuristic  o o  

Bartlett et al., 2014  o Congestion-aware dynamic routing o  o  (1) 

Corréa et al., 2007 o o Hybrid CP/MIP approach o  o  

Dai et al., 2019  o 
Ant colony optimization with A* 

algorithm 
 o   

Desaulniers et al., 2003 o o Column Generation o o o  
Fransen and van Eekelen, 

2021 
 

o 
A* algorithm  o  o 

Fransen et al., 2020  o A* algorithm o o  o 

Hwang and Jang, 2020  o Q(λ) Learning o  o  (1) 

Ki, Na, and Kim, 2019.  o 
Route control with travel time prediction 

and random route selection 
o  o  

Kim et al., 2007 o  RBD   o  (1) 

Kim et al., 2009 o  HABOR   o  (1) 

Lee, Lee, and Na, 2018  o Routing with congestion monitoring o  o  (1) 

Martins et al., 2022  o A* algorithm  o  o(2) 

Mu et al., 2020  o A* algorithm o o o o(3) 

Nishi, Hiranaka, and 

Grossmann, 2011 
 o Bilevel decomposition algorithm o    

Raajan et al., 2020  o Deep reinforcement learning o    
Tang, Zhu, and Luo, 

2016. 
 o Particle swarm optimization  o   

Tuncer and Yildirim, 

2012 
 o Genetic algorithm o o   

Yuan et al., 2020  o A* algorithm o o o  

Zhao and Fu, 2012  o Ant colony optimization  o   

This paper o o 
RBD, HABOR, Advanced dynamic A* 

algorithm 
o o o o 

(1) Dealing with OHTs on curved rails 

(2) Considering the smoothness of the total path 

(3) Considering the number of turns on the total path 

 

As shown in Table 1, few studies have covered the dispatching and routing problems concurrently. Desaulniers et al. 

(2003) and Corréa et al. (2007) are the only papers that have considered the dispatching and routing problems concurrently. 

Desaulniers et al. (2003) proposed a mathematical formulation to determine the assignment of vehicle requests and a conflict-

free routing solution to minimize the production delay cost. To solve the model, a column generation method and heuristic 

method were proposed; however, they were applied to small instances with no more than five vehicles. In addition, they 

assumed that the load occurrence was precisely scheduled, which hinders the application of their approach to dynamically 

changing factory environments with a large number of vehicles. Corréa et al. (2007) proposed a hybrid decomposition method 

using constraint programming (CP) and mixed integer programming (MIP). The decomposition framework consists of a 

master problem (scheduling problem modelled with CP) and a subproblem (conflict-free routing problem modelled with the 

MIP model with the time-space network). Their proposed method can solve small instances with up to six AGVs. Although 

the two abovementioned papers dealt with dispatching and routing problems concurrently, they did not analyze the effects of 

each and the simultaneous effects of the two. 

The major contributions of our study can be summarized as follows. 

1. We developed an advanced dynamic A* routing algorithm for a real-world production line, in which a grid-type 

material flow layout that requires AGVs to stop before changing their direction of movement is used by introduci

ng an upper bound limit on the estimated link time and a refresh method. In the simulation experiments conducte

d in this study, this algorithm showed improved productivity. 

2. We simultaneously applied dispatching and routing algorithms by testing three dispatching and three routing algo
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rithms and measured their impact. Our study is the first to measure the respective impacts quantitatively. 

3. We demonstrated that dispatching methods have more significant impacts compared to routing methods. For a sa

mple production line, the HABOR dispatching algorithm could reduce the lead time by 28.8 %, whereas the adva

nced dynamic A* routing algorithm could reduce the lead time by only 4.5 %. 

4. The impact of the simultaneous application of dispatching and routing algorithms was significant. The applicatio

n of HABOR and Advanced Dynamic A* resulted in a 30.4 % reduction in the average total lead-time. 

 

3. SIMULATION ENVIRONMENT 

 

For our simulation, we used an AGV system, which covers part of a real production factory of Samsung Display, a global 

display manufacturer. The environment setup was similar to that of the actual process at the sample factory. The logistics 

process is to move display panels for production. When the display panels exit the machines, trays are used to carry them, 

and they can then be loaded onto AGVs. Therefore, there are two types of loads: panel and tray. 

Figure 2 shows the simulated partial production line. The area of the production line is 12 m × 90.5 m, with 20, 24, 12, 

and 8 type machines. Each machine of types A, B, C, and D has a different configuration for the input and output ports, i.e., 

one IN and one OUT (separately), one IN, one OUT, and one OUT port, respectively. If a machine has an IN port, it can 

receive a load, whereas if it has an OUT port, it can generate a load delivery request. Note that some machines have IN ports 

only, and some have OUT ports only because we set the boundary of the target AGV system using such a layout. Machines 

equipped with IN (OUT) ports only have OUT (IN) ports outside the AGV system boundary. The loads are picked from the 

OUT ports and delivered to the IN ports. For example, a type D machine is a lift that connects the lower floor to the upper 

floor of the AGV system, so it has an OUT port only within the AGV system boundary. Each Type A machine has an IN port 

and an OUT port within the AGV system boundary. 

The panels exit machine type A or D to machine type B, and the trays move from machine type C to machine type A. 

Machine type A receives panels from outside the AGV system and sends them to the AGV system after processing. When a 

panel exits machine type A, a tray from machine C is required to carry the panel. Machine type D is a lift that transfers panels 

on trays from the lower floor to the upper floor. In this study, the detailed manufacturing process is not considered; however, 

the logistics process is simulated by creating delivery requests according to inter-arrival times and their origin and destination 

locations provided by the company. The AGV characteristics are also provided by the company. 

It was assumed that load delivery requests occurred by uniformly distributed inter-arrival times, 𝑈(514, 534), at each 

OUT port. The average number of loads from the OUT ports to the IN ports is presented in Table 2. In the first column, 

“Panel” represents a panel on a tray. A load delivery request occurred at each loading port, and the unloading port was 

randomly selected according to the classification in Table 2. The total number of load delivery requests was 3300 in 12 h, 

that is, a request every 13.1 s for the AGV system on average. The loading capacity of the OUT port was one. Therefore, 

when a load occurs at an OUT port, if the previous load has not been picked up by an AGV, it is placed immediately after the 

previous load in the waiting queue of the port and waits until it is picked up. 

The AGV system uses unidirectional lines, so AGVs can only move forward. As shown in Figure 2, there are four 

vertical lines and 13 horizontal lines. The two vertical lines on the left are downward, and the other vertical lines are upward. 

Six horizontal lines were leftward, and the others were rightward. In the AGV lines, there are IN and OUT port locations of 

machines and 258 control points (CP), which include intersection points and 1 m interval points on the lines. 

The AGV system had 32 AGVs. The moving speed of the AGV was 35 m/min (583.33 mm/s), and its 

acceleration/deceleration speed was 0.1 m/s2. Because the capacity of an AGV is one, it can carry one load at a time. The 

loading (pickup) and unloading (set down) time of an AGV is 15 s. AGVs must stop and turn when they change the moving 

direction, and the 90 ° turn requires 4.74 s. 

In an AGV system, the locations of charging and parking stations are important. However, we did not consider charging 

operations because they are not directly related to the purpose of this study. We also assumed that idle AGVs circulated along 

the red AGV lines in Figure 2 instead of parking at specific locations.  

 

Table 2. Average Number of Loads between Machines 

 

Load type From (# of ports) To (# of ports) Count (per 12 hours) 

Panel Machine A (20) Machine B (24) 1650 

Tray Machine C (12) Machine A (20) 990 

Panel Machine D (8) Machine B (24) 660 
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Figure 2. Layout and Location of Machines [Machine Type (Number of Ports per Box)] 

 

4. DISPATCHING AND ROUTING ALGORITHMS 

 

To measure the impact of the dispatching and routing methods, we experimented with three dispatching algorithms and three 

routing algorithms. 

 

4.1 Dispatching Algorithms 

 

We implemented three dispatching algorithms: the closest vehicle selection rule, RBD, and HABOR. All algorithms were 

easy to implement, and the computation times were very short. According to the closest vehicle selection rule, when a load 

delivery request occurs, the idle AGV closest to the loading location of the request is selected if there are idle AGVs. If there 

is currently no idle AGV, the delivery request remains unassigned and is later assigned to the AGV that completes its current 

task the fastest. With this rule, once an AGV is assigned to a delivery request, reallocation does not occur. 

Using the RBD, the initial allocation of the AGV to a delivery request is performed in the same manner as the closest 

vehicle selection rule. The difference is that when an AGV becomes idle, and there are no unassigned delivery requests to be 

assigned to the AGV, the RBD searches for delivery requests that have not been picked up by AGVs and can reduce the 

waiting time if their currently assigned AGVs are changed to idle AGV. If there are such requests, the delivery request that 

results in the largest waiting time saving is selected, and the vehicle is reassigned to the idle AGV. In short, an idle AGV can 

steal a close job if the distance from the already-assigned AGV to a load is longer than that from the idle AGV to that load. 

For a more detailed description of RBD, refer to Kim et al. (2007). 

HABOR is an enhanced version of RBD. Whereas an idle AGV takes a near delivery request, and there is at most one 

reassignment at a time by the RBD, multiple reassignments are possible by HABOR. When an AGV becomes idle, HABOR 

is performed when a certain period of time has elapsed from the previous HABOR. HABOR searches all the AGVs that do 

not carry loads, including the AGVs moving to retrieve loads and all the delivery requests whose loads have not been picked 
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up. The distances between AGVs and loads are calculated as an assignment cost, and an assignment problem is formulated 

and solved using the Hungarian algorithm. Therefore, multiple reassignments occurred. HABOR reduces the total lead time 

by reallocating multiple vehicles and loads concurrently. Although HABOR has been proposed for OHT systems, it can be 

applied to AGV systems without modification. Detailed descriptions of the HABOR are provided by Kim et al. (2009). 

 

4.2. Routing Algorithms 

 

We implemented three routing algorithms: the shortest route selection rule, the dynamic A* algorithm, and the advanced 

dynamic A* algorithm. The shortest route selection rule was the default selection method applied by AutoMod. Based on this 

rule, the shortest route from one location to another is selected, and an AGV follows this route. The A* algorithm is a well-

known shortest-path search algorithm for one-to-one paths. The other two algorithms are described below. 

 

4.2.1 Dynamic A* Algorithm  

 

We used the dynamic A* algorithm to determine the fastest route from the current position to the destination. This routing 

algorithm can navigate and change the route while an AGV is moving instead of maintaining to the initial route path calculated 

when starting the movement in the traditional A* algorithm method. In addition, our dynamic A* algorithm takes into 

consideration the turn penalty owing to the grid layout. 

To calculate the travel time of a route, we used 𝑊 value as the estimated travel time for each link between any two 

adjacent CPs. At first 𝑊𝑖𝑛𝑖𝑡(𝑖, 𝑗) is set to the value of distance between CPs i and j divided by the AGV speed, as shown in 

Equation (3). Whenever an AGV passes the link between CPs i and j, 𝑊(𝑖, 𝑗) is updated by exponential smoothing with 

parameter α, as shown in Equation (4). Using this procedure, 𝑊(𝑖, 𝑗) stores experienced information. On the contrary, the 

shortest route selection rule uses 𝑊𝑖𝑛𝑖𝑡(𝑖, 𝑗)  only. In the experiments, we set the value of α  to 0.5 after preliminary 

experiments. 

 

𝑑(𝑖, 𝑗) =  distance from CP 𝑖 to CP 𝑗  (1) 

𝑡(𝑖, 𝑗) =  AGV travel time from CP 𝑖 to CP 𝑗 (2) 

𝑊𝑖𝑛𝑖𝑡(𝑖, 𝑗) =
𝑑(𝑖, 𝑗)

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝐴𝐺𝑉
 (3) 

𝑊𝑛𝑒𝑤(𝑖, 𝑗) = 𝑊(𝑖, 𝑗) + α ∗ (𝑡(𝑖, 𝑗) − W(𝑖, 𝑗)) (4) 

 

As the AGV system in this study requires right-angle turns, the turn times of a route must be considered if the route 

contains turns. Unlike an AGV system with a curved-line structure, an AGV system with a grid-line structure has only straight 

lines. Therefore, when an AGV moves from a horizontal line to a vertical line, it is necessary to stop, rotate, and start to move 

again. These activities require additional time and must be considered when the travel time from a location to a location is 

calculated by the A* algorithm. Accordingly, we introduce a penalty for each turn. 

In the A* algorithm, the travel time from the start location to the destination location through CP i, 𝑓(𝑖), is estimated 

using 𝑔(𝑖) plus ℎ(𝑖). 𝑔(𝑖) is the travel time from the start location to CP i, and is calculated using the estimated link travel 

times Wnew. When 𝑔(𝑖) is calculated, the number of turns of the route is counted, and the corresponding turn penalty is added. 

ℎ(𝑖) is the lower bound of travel time from CP i to the destination location. Assuming that there is no AGV between CP i 

and the destination location, we used the initial link travel times Winit considering the turn times to calculate h(i). Thus, h(i) 

value is static, and the lower bounds of the travel times from all CPs to all CPs can be precalculated at the beginning. 

Figure 3 shows the two routes between the two locations. If the turn penalty is not counted, the travel times of the routes 

will be the same if the link travel times are proportional to their lengths. However, with the turn penalty, Route 1 is faster 

than Route 2 because the former has one turn, whereas the latter has two. Because an AGV must stop for turning, its actual 

travel time is increased due to its deceleration and acceleration at turning. Thus, the turn penalty is set to a larger value than 

the actual turn time. In our experiments, we set Turn Penalty to 10 s, whereas it takes 4.74 s for an AGV to turn 90 °, as 

described in Section 3. 

Using the dynamic A* algorithm, each AGV selects the shortest route to its destination at each CP and dynamically 

changes its path while moving. When an AGV searches for the shortest-time route using the A* algorithm at each CP, the 

estimated travel times between CPs are used, and they are continuously updated by the movements of the AGVs and 

exponential smoothing, as shown in Equation (4). 
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Figure 3. Examples of a Route with Turn Penalty and a Route without Turn Penalty 

 

4.2.2 Advanced Dynamic A* Algorithm  

 

Although A* algorithms have been widely used, as summarized in Section 2, we have found some weaknesses in the 

algorithm applied to our AGV system. The dynamic A* algorithm uses 𝑊(𝑖, 𝑗) to determine the fastest route to the target 

destination of an AGV. However, updating 𝑊(𝑖, 𝑗) with only the exponential smoothing method resulted in the problems 

described below. To solve this problem, we proposed two methods of refreshing and restricting the upper limit. 

The major problem with the algorithm is that 𝑊(𝑖, 𝑗) is updated only when an AGV passes the link (CP i to CP j). 

Suppose that some AGVs have passed (𝑖, 𝑗) and experienced heavy traffic jams. Then, 𝑊(𝑖, 𝑗) was set to a large value using 

Equation (4). This large value prevents the selection of the link unless other links from CP i have similarly large values. Then, 

the link is no longer selected as part of the route. However, in many cases, the link’s traffic jam is soon resolved, and there is 

no AGV on the link. To address this updating problem, we propose refreshing 𝑊𝑛𝑒𝑤(𝑖, 𝑗) using exponential smoothing with 

parameter α and the initial value 𝑊𝑖𝑛𝑖𝑡(𝑖, 𝑗), as expressed in Equation (5). When the value of a link is not updated for a certain 

period of time, the value is refreshed by the Equation. The threshold period was set to 30 s. 

 

𝑊𝑛𝑒𝑤(𝑖, 𝑗) = 𝑊(𝑖, 𝑗) + α ∗ (𝑊𝑖𝑛𝑖𝑡(𝑖, 𝑗) − W(𝑖, 𝑗)). (5) 

 

The second problem of the dynamic A* algorithm is similar to the first. When some AGVs experience heavy congestion 

on (𝑖, 𝑗) link, 𝑊𝑛𝑒𝑤(𝑖, 𝑗) can be set to a very large value, and the link is not selected as a route link. In some cases, this causes 

an inefficient route selection. Figure 4 shows an example of this phenomenon. When the middle short link has a very large 

value of 𝑊(𝑖, 𝑗), the surrounding path can be selected as shown in the left figure. However, the path around cannot be more 

efficient than the short link shown in the right figure because of the line network structure. To prevent AGVs from moving 

far away, we introduced an upper limit of the estimated time on each link, as shown in Equation (6). Now, the travel time is 

updated using Equation (7). The value of β was set to 15. 

 

𝑊𝑚𝑎𝑥(𝑖, 𝑗) =  𝑊𝑖𝑛𝑖𝑡(𝑖, 𝑗) ∗ 𝛽 (6) 

𝑊𝑛𝑒𝑤(𝑖, 𝑗) = 𝑚𝑖𝑛 (𝑊(𝑖, 𝑗) + α ∗ (𝑡(𝑖, 𝑗) − W(𝑖, 𝑗)), 𝑊𝑚𝑎𝑥(𝑖, 𝑗)). (7) 

 

We call this modified version, which has a refresh mechanism with Equation (5) and uses Equation (7) for updating, 

advanced dynamic A* algorithm. 
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Figure 4. Examples of a Route without Bounded Maximum and a Route with Bounded Maximum. 

 

5. SIMULATION RESULTS 

 

All simulation experiments were conducted using AutoMod (package version 12.5.2). This software has been used in many 

AMHS-related studies, including Kim et al. (2007), Kim et al. (2009), and Hwang and Jang (2020). AutoMod provides two 

moving vehicle systems for modelling AGV/OHT: the path mover system and the power and free system. Although both 

systems can be used in our experiment, the path mover system was selected in this study. 

We used 2 hours warm-up, 12 hours 𝑊 value initial update, and 12 hours result collection. Thus, each simulation run 

lasted 26 h. Twenty replications were performed for each simulation setting. 

 

5.1 Results of Dispatching and Routing Algorithms with 32 AGVs 

 

The experiment was conducted using 32 AGVs. We performed nine combinatorial experiments using three dispatching and 

three routing algorithms. The parameters used in the experiment are shown in Table 3. 

Table 4 lists our simulation results. The columns labeled ‘Retrieve’ show the retrieval time, which is the duration 

between the load delivery request occurrence and the pick-up time of the load. The columns labeled ‘Delivery’ show the 

delivery time, which is the duration from a load pick-up time to its unloading time at its destination. The columns labeled 

‘Total’ indicate the total lead-time from the load delivery request occurrence to the unloading time. All times are in seconds. 

The rows labeled ‘Avg.’ and ‘Std’ shows the average and standard deviation of times, respectively. The simulated dispatching 

algorithms are closest vehicle selection rule (labeled ‘Closest’), RBD, and HABOR, and the routing algorithms are the 

shortest route selection rule (labeled ‘Shortest’), a dynamic A* algorithm (labeled ‘Dynamic A*’), and an advanced dynamic 

A* algorithm (labeled ‘Advanced Dynamic A*’). The shortest routing is static, and the route from a location to a location is 

not changed, whereas the other two routings are dynamic, and the route can be changed. The number of completed delivery 

requests was not explicitly reported, as all delivery requests were completed in all the combinatorial experiments. 

 

Table 3. Simulation Parameters 

 

Parameter Value 

α 0.5 

β 15 

Turn penalty (s) 10 

Refresh threshold (s) 30 
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Table 4. Simulation Results 

 
Routing 

 

Dispatching 

Shortest Dynamic A* Advanced Dynamic A* 

Retrieve 

(s) 

Delivery 

(s) 

Total  

(s) 

AGV 

Util.(%) 

Retrieve 

(s) 

Delivery 

(s) 

Total  

(s) 

AGV 

Util.(%) 

Retrieve 

(s) 

Delivery 

(s) 

Total  

(s) 

AGV 

Util.(%) 

Closest 
Avg. 292.7 182.7 475.4 92.5 286.3 179.3 465.6 91.1 287.7 177.3 464.9 90.0 

Std. 5.9 2.1 5.9 0.9 6.9 2.0 6.7 1.0 6.4 1.7 6.2 0.9 

RBD 
Avg. 188.5 178.9 367.3 79.2 180.2 174.4 354.6 77.5 177.8 173.0 350.8 76.7 

Std. 9.3 2.2 10.3 1.8 6.9 2.2 7.6 1.3 7.6 2.6 8.0 1.4 

HABOR 
Avg. 160.6 180.5 341.1 79.0 161.1 175.3 336.3 78.3 157.4 173.6 331.1 77.3 

Std. 10.0 2.3 11.1 1.8 9.5 2.6 10.3 1.7 9.0 1.8 9.5 1.7 

 

The impact of the dispatching algorithms is significant. With the basic routing algorithm (Shortest), RBD and HABOR 

reduced the total lead time by 22.7 % (from 475.4 s to 367.3 s) and 28.2 % (from 475.4 s to 341.1 s), respectively, compared 

to the ‘Closest’ algorithm. With the dynamic A* routing algorithm, RBD and HABOR could also reduce the total lead time 

by 23.8 % and 27.8 %, respectively. With the advanced dynamic A* routing algorithm, RBD and HABOR could also reduce 

the total lead time by 24.6 % and 28.8 %, respectively.  

The dispatching algorithm effectively reduced the retrieval time, which is the time taken to reach the pickup location of 

the delivery request, as the assigned load vehicle changes to a nearby vehicle. The retrieval time depends on which vehicle is 

assigned, hence dispatching methods affect the change in retrieval time. With the shortest routing algorithm, RBD and 

HABOR reduced the retrieval time by 35.6 % (from 292.7 s to 188.5 s) and 45.1 % (from 292.7 s to 160.6 s), respectively, 

compared to the ‘Closest’ algorithm. With the dynamic A* routing algorithm, RBD and HABOR can also reduce the retrieval 

time by 37.1 % and 10.6 %, respectively. With the advanced dynamic A* routing algorithm, RBD and HABOR can also 

reduce the retrieval time by 38.2 % and 11.5 %, respectively. As a result, the dispatch algorithms effectively reduce the 

retrieval time through effective vehicle allocation. 

The impact of routing algorithms is meaningful but not as significant as that of dispatching algorithms. With the basic 

dispatching algorithm (Closest), dynamic A* and advanced dynamic A* could reduce the total lead time by 2.1 % (from 

475.4 s to 465.6 s) and 2.2 % (from 475.4 s to 464.9 s), respectively, compared to the ‘Shortest’ algorithm. With the RBD 

dispatching algorithm, dynamic A* and advanced dynamic A* could also reduce the total lead-time by 3.5 % and 4.5 %, 

respectively. With the HABOR dispatching algorithm, dynamic A* and advanced dynamic A* could also reduce the total 

lead-time by 1.4 % and 3.0 %, respectively. The advanced dynamic A* algorithm clearly decreases the lead time and AGV 

utilization over static shortest routing. It also shows improvement effects over dynamic A* algorithm. 

Since the routing algorithms change the travel path of AGVs, it directly affects the delivery time, although the start and 

end positions are the same. With the closest dispatching algorithm, dynamic A* and advanced dynamic A* can reduce the 

delivery time by 1.9 % (from 182.7 s to 179.3 s) and 3.0 % (from 182.7 s to 177.3 s), respectively, compared to the ‘Shortest’ 

algorithm. With the RBD dispatching algorithm, dynamic A* and advanced dynamic A* can also reduce the delivery time 

by 2.5 % and 3.3 %, respectively. With the HABOR dispatching algorithm, dynamic A* and advanced dynamic A* can also 

reduce the delivery time by 2.9 % and 3.8 %, respectively. As a result, routing algorithms reduced the total lead time by 

reducing the delivery time. 

The impact of the simultaneous application of dispatching and routing algorithms was significant. The application of 

HABOR and advanced dynamic A* resulted in a 30.4 % reduction in the average total lead time (from 475.4 s to 331.1 s). 

We further investigated the impact of the integration of dispatching and routing algorithms. Table 5 shows the t-values 

of the paired t-test for the average total lead-time. For the paired t-test, we assumed the following hypotheses: 

 H0: The average lead time of the row algorithm is not different from that of the column algorithm. 

 HA: The average lead time of the column algorithm is lower than that of the row algorithm. 

Therefore, the large value in Table 5 indicates an improvement in the column algorithm over the row algorithm. If the 

improvement is statistically significant with a p-value of less than 0.05, the values are marked in bold. All comparisons were 

considered statistically significant. 

The simulation results showed that Advanced Dynamic A* can reduce the lead time, but the impact of dispatching 

algorithms, such as RBD and HABOR, is more significant. When a load delivery request occurs, the retrieval distance 

between the load and AGV varies significantly depending on which AGV is selected. Thus, the impact of dispatching 

decisions is significant. On the other hand, although the delivery time depends on which route is selected, there is a limit to 

reducing the routing time because the traveling distances among the possible routes are similar. In spite of the fact, a smart 

routing decision can still reduce the lead time. In summary, effective dispatching and routing algorithms must be used together 

to realize a smart AHMS. 
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Table 5. Paired t-test Statistics (t-value) of Average Total Lead Time between Integrated Algorithms 

 

Integrated Algorithms 

(Dispatching + Routing) 
1 2 3 4 5 6 

1. Closest + Shortest  43.58 56.70 7.83 61.11 69.51 

2. RBD + Shortest -43.58  8.43 -39.18 8.28 12.80 

3. HABOR + Shortest -56.70 -8.43  -59.69 -3.35 8.13 

4. Closest + Advanced Dynamic A* -7.83 39.18 59.69  56.58 76.90 

5. RBD + Advanced Dynamic A* -61.11 -8.28 3.35 -56.58  7.70 

6. HABOR + Advanced Dynamic A* -69.51 -12.80 -8.13 -76.90 -7.70  

 

5.2 Simulation Results with Different Numbers of AGVs 

 

In this section, the effects of the algorithms according to the number of AGVs are analyzed. Simulations were conducted by 

adjusting the number of AGVs from 29 to 35. 

 

Table 6. Simulation Results According to the Number of AGVs 

 

Number 

of 

AGVs 

Total lead time (s) AGV Utilization (%) 

1 2 3 4 5 6 1 2 3 4 5 6 

29 457.5 376.7 358.2 447.4 358.2 349.2 85.93 78.15 77.85 84.22 75.79 76.60 

30 463.2 371.5 349.7 453.7 354.5 340.3 88.17 78.41 78.13 86.25 76.16 76.66 

31 469.3 369.6 345.0 458.6 353.3 333.2 90.34 79.04 78.60 88.20 76.71 76.69 

32 475.4 367.3 341.1 464.9 350.8 331.1 92.46 79.24 79.04 90.00 76.66 77.33 

33 481.8 363.4 339.2 472.1 350.8 328.6 94.40 79.01 79.64 92.01 77.09 77.72 

34 489.8 364.8 339.8 478.6 351.5 328.1 96.55 79.36 80.49 93.80 77.34 78.21 

35 499.2 365.2 336.8 488.1 355.1 326.1 98.83 79.51 80.43 96.24 78.03 78.26 

* The algorithm indices 1, 2, 3, 4, 5, and 6 are listed in Table 5. 

 

Table 6 shows the simulation results, and Figures 5 and 6 show the graphs of the total lead time and AGV utilization 

according to the number of AGVs, respectively. The 'Total lead time' column represents the average value of the total lead 

time in seconds, from load delivery request occurrence to the unloading time, and ‘AGV Utilization’ represents the average 

value of AGV utilization for each algorithm. The index of the algorithm is listed in Table 5. 

 

 
 

Figure 5. Total Lead Time According to the Number of AGVs 
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Figure 6. Utilization According to the Number of AGVs 

 

Based on the simulation results, we can conclude that the impact of dispatch rules and routing algorithms is consistently 

significant, regardless of the number of AGVs. As the number of AGVs increases, the total lead times and utilization of the 

Closest dispatching rule increase. This implies that the more AGVs there are, the more complex the traffic flow. However, 

with RBD and HABOR, as the number of AGVs increases, the total lead time decreases. The two dispatching algorithms 

allow the AGV system to accommodate a larger number of AGVs without heavy traffic congestion by efficiently assigning 

loads to AGVs. Additionally, the advanced dynamic A* routing algorithm can reduce the total lead times, regardless of the 

number of AGVs.  

 

5.3 Simulation Results with Different Load Occurrences 

 

In this section, the effects of the algorithms according to the number of loads (delivery requests) are analyzed. Simulations 

were conducted by adjusting the number of loads with 32 AGVs. Table 7 shows the simulation results; the retrieval, delivery, 

total lead times, and AGV utilization according to the number of loads. 

 

Table 7. Simulation Results with Different Number of Loads 

 

Number 

of 

Loads 

Routing 

 

Dispatching 

Shortest Advanced Dynamic A* 

Retrieve 

(s) 

Delivery 

(s) 

Total  

(s) 

AGV 

Util.(%) 

Retrieve 

(s) 

Delivery 

(s) 

Total  

(s) 

AGV 

Util.(%) 

2100 

Closest 
Avg. 309.1 170.8 479.9 58.8 295.7 165.5 461.2 57.3 

Std. 8.8 5.9 14.7 1.0 8.9 3.9 12.8 0.6 

RBD 
Avg. 245.1 169.2 414.3 53.0 243.3 166.0 409.3 53.1 

Std. 0.1 3.5 3.6 0.4 7.6 1.4 6.2 2.0 

HABOR 
Avg. 197.0 170.7 367.7 53.3 192.6 169.0 361.6 52.7 

Std. 0.3 6.4 6.1 0.3 2.9 3.8 6.8 0.2 

3600 

Closest 
Avg. 282.3 190.5 472.8 98.4 268.7 180.8 449.5 96.4 

Std. 8.7 1.8 8.6 0.5 7.9 2.7 7.4 0.5 

RBD 
Avg. 251.4 186.8 438.1 95.7 228.6 177.6 406.2 90.9 

Std. 10.2 2.0 8.5 0.5 9.4 1.7 9.3 1.2 

HABOR 
Avg. 211.4 188.3 399.7 92.5 188.1 180.3 368.4 88.0 

Std. 13.0 1.0 12.8 1.4 15.3 0.9 15.8 1.7 

 

The impact of the dispatching algorithms is significant in both number of loads cases. With 2100 loads per 12 h using 

the shortest routing algorithm, RBD and HABOR reduced the total lead time by 13.7 % (from 479.9 s to 414.3 s) and 23.4 % 



Bang et al. Impact of Dispatching and Routing in AGV System 

 

533 

(from 479.9 s to 367.7 s), respectively, compared to the ‘Closest’ algorithm. Using the dynamic A* routing algorithm, RBD 

and HABOR reduced the total lead time by 11.3 % and 21.6 %, respectively. With 3600 loads, RBD and HABOR reduced 

the total lead time by 7.3% and 15.5% with shortest routing, respectively, and 9.6% and 18.0% with the dynamic A* routing 

algorithm, respectively. As discussed in Section 5.1, the retrieval time decreases significantly according to the dispatching 

algorithms. When the vehicle utilization is lower, the impact of the dispatching algorithms is bigger. 

The impact of the routing algorithms is also noticeable in both cases. With 2100 loads per 12 h and three dispatching 

algorithms, the advanced dynamic A* can reduce the total lead time by 3.9 % (from 479.9 s to 461.2 s), 1.2 % (from 414.3 s 

to 409.3 s), and 1.7 % (from 367.7 s to 361.6 s), respectively, compared to the shortest algorithm. With 3600 loads, it reduced 

by 4.9 %, 7.3 %, and 7.8 %, respectively. As discussed in Section 5.1, the routing algorithms reduce the delivery time slightly. 

When the vehicle utilization is higher, the impact of the routing algorithms is bigger. 

Based on the simulation results, we can conclude that the impact of the dispatching and routing algorithms is consistently 

large regardless of the number of loads, although dispatching methods show a more significant impact. 

 

6. CONCLUSIONS 

 

In this study, we experimented with three dispatching and three routing algorithms and measured their impact on the total 

lead time using a simulation model for an AGV system. The dispatching algorithms are the closest vehicle selection rule, 

RBD, and HABOR, and the routing algorithms are the shortest route selection rule, dynamic A* algorithm, and advanced 

dynamic A* algorithm, respectively. The proposed dynamic A* algorithms determine the fastest routes with travel time 

estimation. For the routing algorithms, we considered the AGV turn time owing to the grid-based layout structure. We also 

found some weaknesses of the A* algorithm applied to our AGV system and proposed an advanced dynamic A* algorithm 

by introducing an upper bound limit on link estimated time and a refresh method. The productivity improvements (decrease 

in the average lead time) of the advanced dynamic A* algorithm were verified through simulation experiments.  

The impact of a good dispatching algorithm is significant (ranging from 27.8 % to 28.8 % of lead time reduction). The 

impact of routing algorithms is also meaningful, but not as significant as that of dispatching algorithms. The simultaneous 

integration of the dispatching rule and routing algorithm showed the most effective reduction in total lead time. The 

application of HABOR and Advanced Dynamic A* resulted in a 30.4 % reduction in the average total lead-time. We conclude 

that effective dispatching and routing algorithms must be used together to realize a smart AHMS. This study can be considered 

as a case study; however, the findings of this study are general and can be applied to other environments. 

There are opportunities to improve or extend this study. First, our experiments were limited to an AGV system. Similar 

experiments can be performed for other AMHS with different layout structures and production environments. Second, more 

sophisticated routing algorithms can be developed. The proposed dynamic A* algorithms uses only historical data to estimate 

the link travel times. However, additional information, such as the current positions of the AGVs and their planned movement 

schedule, can be used to estimate future travel times more accurately. Third, research on dispatching and routing algorithms 

in volatile environments can be conducted. For example, load delivery request occurrence patterns, consisting of locations 

and quantities, may change dynamically. Fourth, this study considered unit-load AGVs. This research can be extended to 

AGV systems with multi-load AGVs. 
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