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In the industrial and manufacturing sectors, scheduling is an essential component in the process of determining crucial 

production cost aspects of corporate strategy. Solving flow-shop problems minimizes the makespan it takes for all jobs to 

be completed, reducing production costs and boosting output. Therefore, many heuristics techniques have been developed 

to assist in reaching a good and quick solution. However, newly developed techniques necessitate testing their performance 

against the classical ones. Therefore, this paper aims to conduct a comparative analytical, computational study of heuristic 

techniques for solving Permutation Flow-Shop Sequencing Problems and evaluating their performance. Eight techniques 

were compared by generating a set of problems of varying sizes and then solving them via a developed computer simulation 

program. Furthermore, a multi-criteria decision-making approach is followed for their performance evaluation. Results of 

the study revealed that based on six performance evaluation criteria, Dannenbring’s technique is the first best, followed by 

the Slope Index technique as the second best, then the technique by Campbell, Dudek, and Smith, Hundal, the Time 

Deviation technique, Palmer, Gupta, and the technique by Jayasankari, Jayakumar, and Vijayaragavan, respectively. This 

paper puts forward a ranking of the developed techniques for flow-shop problems and a framework for the performance 

evaluation of new permutation flow-shop scheduling problem methods. 
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1. INTRODUCTION 
 

One of the most discussed issues in the field of Operations Research is the Permutation Flow-Shop Scheduling Problem 

(PFSP) for a reduced makespan time at a permutation flow factory (Fernandez-Viagas et al., 2017). In the PFSP, there are a 

number of machines and a number of jobs, each of which requires a number of operations. Because each machine is solely 

responsible for completing one job operation at a time, the jobs must all be completed in the same order as the used 

machines. Therefore, in the PFSP, machines must process jobs, which must be completed in a specific sequence and cannot 

be completed ahead of other jobs (Johnson, 1954). Thus, after knowing how long each machine will take to complete its 

assigned jobs, the goal is to find the ideal sequence of jobs that reduces the total makespan. Manufacturers profit financially 

from shorter makespans because they predict more sales volumes. However, solving the PFSP problems with more than 

two machines classify as a Nondeterministic Polynomial-time complete (NP-complete) problem (Garey et al., 1976a; 

Coffman, 1976; Rinnooy Kan, 1976a). Consequently, finding the best sequence of jobs in a reasonable time is usually out 

of the question. Scholars have presented several heuristic strategies to obtain approximate answers in practical contexts 

with limited time constraints (e.g., Komaki et al., 2019; Nawaz et al., 1983; Ruiz et al., 2005; Al Kattan and Maragoud, 

2008; Muştu and Eren, 2018).  

For any scheduling problem, the core of flow-shop scheduling is using the primary resource. Machines are often seen 

as primary resources in the scheduling issue since they are continuously used throughout the lifecycle of each job. 

Therefore, such scheduling is essential because of its capacity to minimize or eliminate the time spent with idle machines 
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(Missah 2015). However, secondary resources (such as raw materials, human resources, or equipment setup) might also be 

necessary to process jobs (Kempf et al., 1998). As an example of a secondary resource, servers are widely used in the 

manufacturing industry (Rahmouni Elidrissi et al., 2021). Secondary resources can be seen in a variety of contexts, 

including scheduling problems involving versatile machines and assembly components (Li et al., 2011), computer-

controlled material handling systems (Kim and Lee, 2012), scheduling issues affecting the movement of biomass via trucks 

within the context of supply chain optimization (Torjai and Kruzslicz, 2016) and scheduling issues at a container terminal 

that affects loading and unloading containers from ships, storing containers in the terminal yard, and transporting containers 

utilizing a fleet of vehicles between ships and yard (Bish, 2003). Work arrangements between tasks or job families are the 

responsibility of servers, which are secondary resources. These servers may stand in for anything from a robot (Koulamas, 

1996) to a person (Costa et al., 2020) to an autonomous car (Hall et al., 2000). This component has also been called a setup 

operator in the scholarly literature (see, e.g., Seeanner and Meyr, 2013; Modrák et al., 2012; Tempelmeier and Copil, 

2016). In addition to the aforementioned practical implications, this scheduling issue is well-suited to the U-shaped 

manufacturing layout (Miltenburg, 2001), in which machines are distributed in a U-shape flow-shop layout, and human 

resources responsible for carrying out the changeovers are located in the center. Therefore, not considering the servers 

forms a Nondeterministic Polynomial-time hard (NP-hard) problem (Rinnooy Kan, 1976b). 

An essential component of optimizing the time spent and resources utilized using a finite number of machines is to 

decide what jobs to do and in what sequence. Solving flow-shop problems minimizes the makespan or the time it takes for 

all jobs to be completed. The pursuit for better sequencing in workshop scheduling is motivated by the need to reduce 

production costs and boost output. Hence, many heuristics techniques have been developed to provide a good and quick 

solution. Eight heuristic methods include Palmer (1965), Gupta (1976), CDS (1970), Dannenbring (1977), and Hundal 

(1988), besides three other techniques, TD (2013), JJV (2021), and Abdulaal and Bafail (2021) are the focus. Therefore, a 

newly developed heuristic technique necessitates testing its performance against the classical ones previously reported in 

the literature. Thus, this paper aims to conduct a comparative analytical, computational study of heuristic techniques for 

solving PFSPs and evaluating their performance. Next, a literature review on PFSPs and developed techniques for their 

solving, a description of the heuristic approaches along with the newly proposed technique, the used materials and methods 

for achieving the objective of this study, analysis of results obtained from implementing the used methodology, a 

discussion and conclusions are provided in the remainder of this paper. 

 

2. LITERATURE REVIEW 

 

In the industrial and manufacturing sectors, scheduling is an essential component in the process of determining crucial 

aspects of corporate strategy. Determining how much work should be done at a given moment, where and when it should be 

done, and what resources should be used is an important step in the job distribution process (Brammer et al., 2022). The 

significance of making and sticking to schedules has skyrocketed in tandem with the global manufacturing spread. It is 

possible that a single machine, two machines, a network of machines, an open system, and other things might all be 

included in the job environment of a single machine. It is crucial to resolve these scheduling issues by assigning workloads 

to individual machines within the confines of a limited resource pool (Chen et al., 2009; Song and Lin, 2021). Criteria that 

pertain to efficiency include makespan, flow time, mean-flow time, waiting time, and idle time, amongst others. Criteria 

that pertain to cost include travel time, equipment maintenance, and labor charges, amongst others. Criteria that pertain to 

deadlines include lateness, tardiness, number of tardy jobs, etc. (Zaied et al., 2021). The objective of the PFSP is to ensure 

that a certain number of jobs (n) are finished in a predetermined order utilizing a set number of machines (m), where each 

machine performs precisely one operation on the jobs. In other words, the goal of the PFSP is to ensure that a certain 

number of jobs (n) are in the shortest total processing time (makespan). The PFSP has garnered the most attention because 

of the practical relevance and pervasiveness of the problem. The PFSP with the shortest makespan criterion has gained 

significant interest from academics and industry experts as a method for measuring the efficiency of production and service 

delivery (de Fátima Morais et al., 2022). 

Previous studies have been concerned with solving the problem of scheduling large-scale job machines in flow shops 

based on the shortest makespan requirement for the last 50 years. Due to the exerted efforts, many heuristics and 

metaheuristic algorithms have been developed. Garey et al. (1976b) demonstrated that flow shop scheduling problems for a 

system with more than two machines and more than two jobs are difficult NP-complete problems. Johnson (1954) was the 

one who initially looked at the schedules for the two- and three-stage flow shops. Ignall and Schrage (1965) developed an 

m-machine system using a branch and bound approach to offer the shortest possible makespan. Page (1961) and Palmar 

(1965) recommended utilizing basic index-based heuristics to rank jobs in descending or ascending order with specified 

weights. This would allow for the most effective use of time and resources. Both Campbell et al. (1970) and Koulamas 

(1998) developed constructive heuristics for scheduling difficulties in a flow shop. They modeled their work after 

Johnson’s two-machine method for scheduling problems. Gupta (1971) proposed a heuristic method that would be effective 
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in overcoming the difficulties associated with scheduling large-scale flow shops that were complicated while also being 

applicable in real life. Bonney and Grundy (1976), Dannenbring (1977), and King and Spachis (1980) used the lowest 

makespan criterion to assess and analyze the effectiveness of different constructive algorithms. Stinson and Smith (1982), 

Nawaz et al. (1983), Taillard (1990), and Hundal and Rajgopal (1988), to mention just a few, are credited with having 

written some of the first academic works on the topic of makespan. It has been shown that the Nawaz, Enscore, and Ham 

(NEH) heuristic is the most effective way of resolving flow shop scheduling issues while maintaining the shortest possible 

makespan (Framinan et al., 2003). A comprehensive literature analysis on the difficulties of flow shop scheduling was 

provided by Reza Hejazi and Saghafian (2005), who used the makespan criterion. Ruiz and Maroto (2005) discovered that 

when compared to Taillard’s standard, the NEH heuristic was the most effective of all the constructive heuristics. 

In the NEH algorithm, sorting and reinsertion are two phases performed in succession. The first step is to construct a 

plan that may be implemented by prioritizing jobs according to the amount of time required to finish them. The second step 

involves picking out certain operations from the first sequence and rearranging them in a different order to cut the total 

make-time. According to the findings of Kalczynski and Kamburowski’s (2007) study, the NEH heuristic suffers from a 

significant flaw. It was determined that the second phase’s work scheduling relied too heavily on the shortest possible 

makespan. Chakraborty and Laha (2007) devised a heuristic strategy to reduce the time necessary to finish a make-in 

permutation flow shop scheduling. Dong et al. (2008) presented the NEHD (Nawaz-Enscore-Ham based on deviation) 

heuristic, which aims to effectively use the machine system by using a one-of-a-kind initial priority rule and an innovative 

method for tie-breaking. Kalczynski and Kamburowski (2008 and 2009) integrated NEH-KK1 and NEH-KK2 heuristics 

with the tie-breaking (TB) method based on Johnson’s heuristic to schedule jobs in a system of machines to minimize 

makespan by providing weightage to the processing time. This integration and weightage were done to minimize the 

makespan in scheduled jobs. The innovative insertion strategies that were provided by Rad et al. (2009) perform much 

better than NEH when measured against the Taillard Benchmarks. This was found in a considerable proportion of the 

situations. Lin and Ying (2016) proposed a constructive heuristic method to solve the difficulties associated with 

makespan-related flow shop scheduling. This method defined a tie-breaking strategy based on a priority rule for the least 

amount of system idle time. Vasiljevic and Danilovic (2015) studied numerous strategies for dealing with ties in the NEH 

heuristic to address the makespan criterion for a PFSP. Liu et al. (2017) investigated the impact of the first four processing 

moments on the beginning job sequence. They proposed a new tie-breaking method for the NEH heuristic by decreasing the 

front delay time and the idle time before the tie position as a solution for the issue. 

Arisha et al. (2001) are all places where various dispatching rules have been analyzed. They focused on a subset of 

the algorithms discussed in the overviews relevant to the issue classes that deal with flow shops or job shops to reduce the 

makespan. Hossain et al. (2014) conducted an investigation beginning with Palmer’s to address a flow shop scheduling 

issue with four jobs and ten machines. The significant NP-hardness of the PFSP that reduces tardiness (Du and Leung, 

1990; Amdouni et al., 2021) has led to their widespread usage of heuristic and metaheuristic approaches to solving them. In 

contrast, precise techniques are impracticable for medium and large examples (Sayadi et al., 2010; Gupta and Chauhan, 

2015). Makespan reduction in flow shop scheduling issues with a non-machine resource is the focus of Laribi et al. (2016). 

An approximate solution to the n-job, m-machine flow shop issue with resource constraints may be swiftly generated by 

modifying the NEH heuristic to account for a second resource constraint. The Job-Shop Scheduling Problem is a more 

difficult simplification since the jobs vary for each primary component. Specific criteria for issue and solution 

formalizations are typically introduced in industrial applications (Fuchigami and Rangel, 2018). A good scheduling strategy 

may help industry professionals and event planners alleviate monetary worries (Cui et al., 2021). 

As mentioned before, the permutation flow shop scheduling issue is one of the most active problems in the operation 

literature, with hundreds of publications tackling various versions and limitations in the classical difficulties in the past 

several years. There are several recent examples of solving the permutation flow shop (Wu et al., 2011; Alawad and Abed-

alguni, 2022; Fathollahi-Fard et al., 2021; Fernandez-Viagas et al., 2022a and 2022b; Lee and Kim 2022; Morais et al., 

2022; Doush et al., 2022; Rifai et al., 2021; Ribas et al., 2021; Meng et al., 2022; Sharma et al., 2022). The curious reader 

is directed to an in-depth analysis of the issue in various settings (Neufeld et al., 2022; Jayasankari, S. 2021). 

In this paper, the well-known and widely used sequencing heuristic techniques for solving PFSP, including Palmer 

(1965), Gupta (1976), CDS (1970), Dannenbring (1977), and Hundal (1988), besides three other techniques, TD (2013), 

JJV (2021), and a new quick and effective computational heuristic approach proposed recently by Abdulaal and Bafail 

(2021) are the focus. Palmer, Gupta, CDS, Dannenbring, and Hundal approaches were chosen above the alternatives 

because they were founded on the same idea as the proposed technique for designing a slop index. On the other hand, the 

other two strategies (TD and JJV) were chosen to compare the suggested technique to those not based on the slope index. 

These techniques have been compared to test their performance in solving PFSPs. The methodology followed to achieve 

the objective and a description of the compared techniques are described subsequently. 
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3. MATERIALS AND METHODS 

 

The general methodology flowchart presented in Figure 1 was followed to achieve the study’s objective in three stages and 

two main analysis phases. In Stage 1, the eight PFSP techniques were determined for comparison after a literature review 

process. Subsequently, a computer simulation program was developed to generate 100,000 different PFSPs with different 

sizes. Solutions to the generated PFSPs using the selected eight techniques were the basis of comparison in two main 

analysis phases. 

 

 
 

Figure 1. Methodology Flowchart 

 

In the first phase, eight PFSP techniques were compared in Stage 2. The comparison was performed using several 

processing-time -based performance measures as the basis of the comparison. This is to test new techniques’ validity and 

performance. The used measures include the total processing time (i.e., makespan), the percentage of improvement using 

the technique, the relative performance between the most recent proposed technique by Abdulaal and Bafail (2021) and the 

other seven techniques, the number of times the proposed technique was better than the other seven techniques, the 

percentage of errors using the technique and the number of best results obtained, and the execution time using the 

technique. 

Subsequently, in the second phase, a performance evaluation was conducted in Stage 3 following a Multicriteria-

Decision-Making (MCDM) approach using the six standard criteria for ranking the studied techniques based on their 

performance in solving the generated PFSPs. Those criteria included the total processing time, flow time, idle time on‒jobs 

and ‒machines, machine utilization, and execution time. A description of each of the eight considered heuristic techniques 

in the comparisons, along with the two phases of the comparative analytical study and pertaining stages followed to achieve 

the objective, are all provided in the following subsections. 

 

3.1 Eight Heuristic Techniques for Solving Permutation Flow-Shop Scheduling Problem (PFSP) 

 

Concerns with flow shop scheduling and job sequencing have sparked intense interest in the field of Operations Research 

over the last several decades, leading to a seemingly endless stream of new approaches and refinements to existing ones. 

Maximum utilization of all available resources is essential in today’s highly competitive global economy, where increased 



Makki et al. Performance of Heuristic Techniques for Permutation Flow-Shop Scheduling Problems 

 

732 

automation permeates almost every sector and area of each organization’s operations. Time is the one resource that is 

certain to be present in every given situation. As a result, there is a pressing need for cutting-edge methods of scheduling 

and sequencing that can optimize a project from start to finish. Therefore, heuristic techniques for solving PFSPs were 

developed previously. The eight techniques listed in Table 1 are the focus of this comparative analytical, computational 

study are described subsequently. 

Johnson (1954) was the first to examine the flow shop issue for ‘n’ jobs to be completed by two machines. As an 

objective function, the total completion time was equivalent to the job’s full completion. According to Johnson’s rule, work 

should come before another if and only if the time interval each machine must spend on the job is less than the time interval 

the other machine spends on the job. When the number of machines exceeds 2, the flow shop scheduling issue becomes 

NP-hard, hinting at its future complexity. The makespans must be larger than or equal to Palmer’s bottom boundaries 

(1965) gave. The Palmer heuristic ranks jobs based on slope indices and schedules them in decreasing order. In its standard 

form, the slope index Si is shown in equation (1). 

 

Table 1. The Eight Heuristic Techniques for Solving Permutation Flow-Shop Scheduling Problems (PFSP) 
 

h Technique Reference 

1 Palmer (Palmer, 1965) 

2 CDS (Campbell, Dudek, and Smith, 1970) 

3 Gupta (Gupta, 1971) 

4 Dannenbring (Dannenbring, 1977) 

5 Hundal (Hundal and Rajgopal, 1988) 

6 Time Deviation (TD) (Rao et al., 2013) 

7 Jayasankari, Jayakumar, and Vijayaragavan (JJV) (Jayasankari et al., 2021) 

8 Slop Index (SI) (Abdulaal and Bafail, 2021) 

 

 

𝑆𝑖= 𝑗=1𝑀𝑀+2𝑗+1 𝑡𝑖𝑗 for 𝑖= 1,2, … ,𝑁, (1) 

 

where tij is the processing time of a job i on a machine j.  

The second heuristic technique, the CDS heuristic, was created by Campbell, Dudek, and Smith (1970), who used 

Johnson’s method as a guide. By partitioning the flow shop issue into two sets of M machines, the inventors of this 

heuristic can solve M-1 two-machine problems and pick the optimal schedule for each set. For the kth reduced problems, 

g=1 or g=2 and k=1, …, M-1, the processing durations Pk
ig of the ith job on the gth machine group are shown in equation (2). 

 

𝑃𝑖1
𝑘 = ∑ 𝑡𝑖𝑗

𝑘
𝑗  and 𝑃𝑖2

𝑘 = ∑ 𝑡𝑖,𝑚−𝑗+1
𝑘
𝑗  (2) 

 

For the third heuristic technique, if ‘n’ jobs are to be completed on ‘m’ machines, and the workflow is unidirectional, 

then Gupta (1971) devised a heuristic to handle this issue. Every job and machine must follow the same technical hierarchy 

for this to be possible. Since machine numbers are assigned randomly, they might be chosen to represent the desired 

outcome—for example, jobs begin on machine 1, then go on to machines 2 and 3, etc., until they finally reach the ‘mth’ 

machine. Gupta (1976) gave each position an index and arranged them in increasing order. Equation (3) shows his 

summary of the index. 

 

𝑓𝑖 = 
𝐴

(𝑡𝑖𝑚+𝑡𝑖𝑚+1) 
  where 𝐴 = {

1      𝑖𝑓 𝑡𝑖𝑚 < 𝑡𝑖𝑚+1

−1                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

 

The fourth heuristic technique is Rapid Access (RA), a heuristic approach first proposed by Dannenbring (1977). 

Dannenbring looked at the combined use of CDS heuristic approaches and Palmer’s slope index. Using Palmer’s slope 

index as a model, Dannenbring built a synthetic two-machine problem and operated Johnson’s approach to solving it. The 

standard forms to calculate response time are presented in equation (4). 
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𝑃𝑖1 = ∑ (𝑀 − 𝑗 + 1) 𝑡𝑖𝑗
𝑀
𝑗=1  and 𝑃𝑖2 = ∑ (𝑗) 𝑡𝑖𝑗

𝑀
𝑗=1  for i=1, 2, …, N (4) 

 

In an effort to find solutions rapidly, the heuristic was devised. It eliminates various flow shop issues and speeds up 

overall production makespan. Two auxiliary machines’ downtime is calculated using Johnson’s rule alone. 

Fifth heuristic techniques, Hundal and Rajgopal (1988) calculated two additional sets of slope indices, which 

expanded on Palmer’s heuristic. As a result, two more schedules are generated, from which the optimal one is chosen. 

These are the two groups of slope indices according to equation (5). 

 

𝑆𝑖 = ∑ (𝑀 − 2) 𝑡𝑖𝑗
𝑀
𝑗=1  and  𝑆𝑖 = ∑ (𝑀 − 2𝑗 + 2) 𝑡𝑖𝑗

𝑀
𝑗=1   for i=1, 2, …, N (5) 

 

Pascal (1973) used binomial coefficients triangle, whereas Dhanasakkaravarthi and Krishnamoorthy (2019) used a 

harmonic triangle. Following the work of Dhanasakkaravarthi and Krishnamoorthy, who utilized the harmonic triangle 

form to address PFSP by reducing ‘n’ jobs, ‘m’ machines to ‘n’ jobs, ‘2’ machines, the optimal makespan could be 

obtained by using Johnson’s rule (Ku and Niu, 1986). A modified heuristic technique, based on the time deviation (TD) 

technique, was developed by Rao et al., 2013, which is the sixth heuristic technique considered in this paper. This approach 

generates a time duration table for each job vertically and horizontally. They found that the row deviation of a given cell in 

a time duration table equals the maximum time duration of the row minus the time duration of the cell as per equation (6). 

 

𝑃𝑖1 = 𝑟𝑖 − 𝑡𝑖𝑗, (6) 

 

where ri is the maximum time of the ith row, pij is the row time deviation of the (i, j)th cell, and tij be the time required for 

processing ith job on the jth machine. Then, they found that the cell’s column deviation in the time duration table is equal to 

the maximum time duration of the column minus the time duration of the cell according to equation (7). 

 

𝐶𝑖1 = 𝑆𝑖 − 𝑡𝑖𝑗  (7) 

 

where, Si is the maximum time of the ith column, Cij is the column time deviation of the (i, j)th cell, and tij is the time 

required for processing ith job on the jth machine. 

In the seventh heuristic technique, to reduce the overall makespan time, Jayasankari et al. (2021) created the JJV 

process, which consists of the following six steps. In step 1, create a table containing the jobs and how long they take to 

complete on each machine. In step 2, find the longest processing time and deduct all the other processing times from the 

processing times for machines M1, M2, M3, …., Mn in each column of the table. One of the processing times becomes nil. 

Step 3 constructs group X and assigns the appropriate job if the first machine’s processing time is ‘zero.’ Assuming it’s on 

the machine’s second half, then create group Y and assign the job to it. If it’s not the first or last machine, the entry 

corresponding to its operation time is deleted and proceeds to the second step if that’s the case. Canceling the related job in 

relation to the zero-processing time is step 4. Next, the remaining time in processing is used to shape the streamlined 

matrix. Then, all the jobs should be placed in the appropriate group, as in the previous phases. In step 5, the X and Y groups 

are formed. The jobs in group Y should now come first in the sequence, followed by the jobs in group X, which should now 

be completed last. The time elapsed may be determined in step 6 by using the acquired sequence. 

Finally, the eighth heuristic technique is a recent Slope Index (SI) proposed by Abdulaal and Bafail (2021). According 

to them, the following are presumptions used to demonstrate the suggested heuristic method for the static flow shop: 

• There are ‘n’ number of jobs (J) and ‘m’ number of machines (M). 

• The order of sequence of operations of ‘n’ jobs on all ‘m’ machines is the same. 

• The time required to set up is excluded from the overall processing time (makespan). 

The steps of the SI heuristic technique by Abdulaal and Bafail (2021) are as follows: 

Step 1: For each flow shop sequencing problem ‘𝐾’ of ‘𝑛’ jobs, ‘𝑚’ machines, and processing time 𝑡𝑖𝑗, determine the 

slope of each job’s trend line 𝑇𝑖  , along its path from the first machine to the last, using equations (8) and (9). 
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𝑇𝑖 =
∑ 𝑡𝑖𝑗

𝑚
𝑗=1

𝑚
        ∀ 𝑖 = 1,… , 𝑛 (8) 

𝐽= 
∑ 𝑗𝑚

𝑗=1

𝑚
 (9) 

 

where, 𝑇𝑖  is the average processing times for each job 𝑖, tij is the processing time of a job i on machine j, and 𝐽 is the 

average machine numbers. 

Step 2: Calculate the slope index 𝑆𝑖 , 𝑖 = 1, … , 𝑛 of each job 𝑖 using equation (10). 

 

𝑆𝑖 =
∑ ((𝑗 − 𝐽) ∗ (𝑡𝑖𝑗 − 𝑇𝑖))

𝑚
𝑗=1

∑ (𝑗 − 𝐽)
2

𝑚
𝑗=1

              ∀ 𝑖 = 1,… , 𝑛 (10) 

 

where, 𝑆𝑖: The proposed SI for each job 𝑖 on machine group 𝑚. 

Step 3: Rank the jobs in descending order by their indices and calculate the total processing time (makespan). 

 

3.2 Comparative Analytical Study Stages 

 

In flow-shop sequencing studies (Arisha et al., 2002), generating a set of problems of varying sizes and then solving them 

with the new techniques and with one or more other proven methods designed for the same flow-shop problem is the 

standard approach for evaluating a heuristic or optimization model for problem-solving. A similar comparison approach is 

followed in this study. As shown in Figure 1, using a developed computer simulation program, 100,000 different PFSPs 

with different sizes were generated following the steps in Stage 1 listed below. 

Stage 1: Generating different flow-shop sequencing problems with different sizes. 

Step 1.1: Consider there are ‘𝑘’ problem sizes, where 𝑘 = 1,… , 𝐾 𝑎𝑛𝑑 ′𝐾′ = 100,  with the following: job numbers’ 

𝑛’ equal to 4, 5, 7, 8, 10, 15, 20, 30, 50, or 80 and machine numbers’ 𝑚’ equal to 4, 5, 6, 10, 20, 30, 40, 70, 80, or 100. The 

problem sizes range from a small-size problem of 4×4 to a large-size problem of 80×100. 

Step 1.2: For each problem size, '𝑛’×‘𝑚' generate '𝑟' replications, where 𝑟 = 1,… , 𝑅 𝑎𝑛𝑑 ′𝑅′ = 1000, assuming that 

in each replica, the processing times 𝑡𝑖𝑗  , for job 𝑖, on machine 𝑗, are uniformly distributed between 1 to 100. 

Step 1.3: From the previous steps, there are ′𝑘𝑟′ different flow shop sequencing problems were created, where 𝑘 =
1,… , 𝐾 and 𝑟 = 1,… , 𝑅. This results in a ′𝐾′X′𝑅′ = 100,000 sequencing problems. 

As shown in Figure 1, solutions for the 100,000 generated problems by the eight techniques (described in subsection 

3.1) are compared in two main analysis phases. In the first phase, they are compared in terms of minimum makespan 

following the steps of Stage 2 presented below. In the second phase, they are evaluated to find their performance rankings 

following the steps of Stage 3.  

 

3.2.1 Phase 1: Processing-Time-Based Comparative Analysis 

 

Stage 2: Compare the eight heuristic techniques for solving Permutation Flow-Shop Scheduling Problem (PFSP). 

Step 2.1: For each flow shop sequencing problem’𝑘𝑟‘of ‘𝑛’ jobs, ‘𝑚’ machines, and processing time 𝑡𝑖𝑗 , use the 

equations (1), (2), (3), (4), and (5) for Palmar, CDS, Gupta, Dannenbring, and Hundal, respectively, and equations (6) and 

(7) for TD, the six steps of JJV, and equations (8), (9), and (10) for SI. This is to identify the job sequencing eight heuristic 

techniques for solving PFSPs. In this case, the number of the technique under comparison is’ℎ′,  where ℎ = 1,… , 8 as listed 

in Table 1. 

Step 2.2: Calculate the total processing time (makespan) for each sequence obtained in step 2.1 using each 

technique ′ℎ′. Let 𝑃ℎ𝑘𝑟
 is the total processing time by technique ′ℎ′ for a given problem size ′𝑘′ at a replica ′𝑟′. 

Step 2.3: Consider sequence problem size ′𝑘′ and compare the results obtained from the eight techniques with respect 

to the following six criteria: 

𝐶1ℎ𝑘: is the average total processing time (makespan) using technique ℎ is calculated using equation (11). 

 

𝐶1ℎ = (∑ 𝑃ℎ𝑘𝑟

𝑅

𝑟=1
) 𝑅⁄  (11) 
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𝐶2ℎ𝑘: is the average number of the SI technique has been better than any other seven techniques. In other words, the 

average number of SI techniques’ overall processing time was shorter than other techniques calculated using equation (12). 

 

𝐶2ℎ = (∑ (𝑃8𝑘𝑟
< 𝑃ℎ𝑘𝑟

)𝑅
𝑟=1 )/𝑅         ∀ ℎ = 1,… , 7 (12) 

 

𝐶3ℎ𝑘: is the average percentage of improvement using the SI technique calculated using equation (13). 

 

For each 𝑃8𝑘𝑟
< 𝑃ℎ𝑘𝑟

, let 𝐶3ℎ = (∑ (
𝑃ℎ𝑟𝑟−𝑃8𝑘𝑟

𝑃8𝑘𝑟

))/𝑅𝑅
𝑟=1     ∀ ℎ = 1,… , 7 (13) 

 

𝐶4ℎ𝑘: is the average relative performance between the SI technique and the other seven techniques calculated using 

equation (14). 

 

𝐶4ℎ = (∑ (
𝑃ℎ𝑘𝑟

𝑃8𝑘𝑟

)𝑅
𝑟=1 ) 𝑅⁄        ∀ ℎ = 1,… , 7 (14) 

 

𝐶5ℎ𝑘: is the average percentage of error using the technique’ ℎ′, and the best result obtained from all techniques under 

investigation is calculated using equation (15). 

 

𝐶5ℎ = (∑ (
𝑃ℎ𝑘𝑟−𝑚𝑖𝑛ℎ(𝑃ℎ𝑘𝑟)

𝑚𝑖𝑛ℎ(𝑃ℎ𝑘𝑟)
)𝑅

𝑟=1 ) /𝑅      ∀ ℎ = 1,… , 8 (15) 

 

𝐶6ℎ𝑘: is the average execution time using the technique ‘ℎ’ in milliseconds calculated using equation (16). 

 

𝐶6ℎ𝑘 = (∑ 𝐸ℎ𝑘𝑟
𝑅
𝑟=1 ) 𝑅⁄       ∀ ℎ = 1,… , 8 (16) 

 

where 𝐸ℎ𝑘𝑟
 is the execution time it takes to compute the total processing time for problem size ′𝑘′ at replication ′𝑟′ using 

technique ′ℎ′. 
Step 2.4: Repeat the above step for all sequencing problems in the list of ′𝑘′ before proceeding to Stage 3 below. In 

this study, any technique of the eight techniques can be used as a reference to compare the other seven techniques under 

examination. This will not have an impact on the comparison’s outcomes. Here, the SI technique is chosen as a reference 

technique since it was the most recent proposed technique in the literature in 2021 among the other seven. Therefore, its 

computed performance can be charted to be visually compared with the other seven techniques according to jobs and 

machines. The average values for all 100,000 sequencing problems can be represented by C1, C2, C3, C4, C5, and C6 for the 

rest of the analysis instead of the preceding six criteria above that were denoted for each technique ′ℎ′, problem size ′𝑘′ and 

an average of 1000 replications. 

 

3.2.2 Phase 2: Multi-Criteria Decision-Making (MCDM) Based Performance Evaluation 

 

Stage 3: Evaluating the performance ranking of the eight heuristic techniques for solving the Permutation Flow-Shop 

Scheduling Problem (PFSP) 

Step 3.1: Apply the MCDM technique to rank the eight techniques based on their performance. A recent MCDM tool 

developed by Abdulaal and Bafail (2022) was used for this step in the paper herein. This tool is known by Ranking the 

Alternatives using the Trace to Median Index (RATMI). According to Abdulaal and Bafail 2022, the RATMI tool was 

compared to seven well-known MCDM techniques, which are: Adaptive Ratio Assessment (ARAS), Simple Additive 

Weightage (SAW), Technique for Order Preference and Similarity to Ideal Solution (TOPSIS), Complex Proportion 

Assessment (COPRAS), VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) in Serbian standing for Multi-

criteria Optimization and Compromise Solution, Weighted Aggregated Sum Product Assessment (WASPAS), and Multi-

Objective Optimization based on Ratio Analysis (MOORA). They showed the competition of the RATMI tool over these 

techniques. Thus, it was selected in the paper herein.  
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The compared eight techniques in this study were initially designed to minimize the total processing time of flow 

shop problems of ‘n’ jobs and ‘m’ machines. However, for their performance evaluation in this study, the six criteria, 

including the processing time, are considered as the RATMI ranking criteria. This is further to check their performance and 

validity from different performance aspects and ensure a comprehensive ranking. The used ranking criteria are as follows: 

 

C1: total processing time: the interval of time from the start of processing until all jobs are completed, as the starting 

time of the first job can be assumed as zero. 

C2: total flow time: the sum of periods in which the jobs are waiting for processing on the first machine until they are 

completed on the last machine. 

C3: total idle time on jobs: the period in which the jobs are waiting for processing. 

C4: total idle time on machines: the period in which the machines wait to receive the jobs in sequence. 

C5: total machine utilization: the percentage of time in which the machines are productive over the total available 

working time. 

C6: total execution time: the total time required to find the job sequence. 

 

The performance criteria C1‒C6 described above were used as the ranking criteria of the eight techniques (i.e., the 

alternatives), assuming equal relative importance weights with a value of 0.167 (i.e., 16.7% each) for each of the six 

criteria, adding up to a value of 1 (i.e., 100% for all criteria). The ranking objective was to minimize C1, C2, C3, C4, and C6, 

and to maximize C5. The required data for the RATMI is formulated using the decision-making matrix 𝑋𝑖𝑗 in equation (17). 

 

[𝑥𝑖𝑗]ℎ𝑥𝑧
=

[
 
 
 
 
𝐴/𝐶 𝐶1 𝐶2 … 𝐶𝑧

𝐴1 𝑥11 𝑥12 … 𝑥1𝑛

𝐴2 𝑥21 𝑥22 … 𝑥2𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝐴ℎ 𝑥𝑚1 𝑥𝑚2 … 𝑥ℎ𝑧]

 
 
 
 

 (17) 

 

where, 

 

𝐴 = [𝐴1, 𝐴2, … , 𝐴ℎ] is a given set of alternatives, and h is the number of techniques (i.e., A1‒A8).  

𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑧] is a given set of criteria, and z is the total number of criteria (i.e., C1‒C6). 

[𝑥𝑖𝑗]ℎ𝑥𝑧
 is an assessment of the alternative technique 𝐴𝑖 with respect to a set of criteria. 

 

Figure 2 illustrates the framework of the RATMI methodology. Results and analysis of implementing the two phases 

of the study and their pertaining stages and steps are provided in the subsequent section. 

 

4. RESULTS AND DISCUSSIONS 

 

The analysis’s first phase concerns conducting a processing-time-based comparative analysis. The first two stages (i.e., 

Stages 1 and 2) and their pertaining steps, illustrated in Figure 1 and described in subsection 3.2.1, were implemented. A 

simulation experiment is employed to test the effectiveness of the eight heuristic techniques listed in Table 1 by comparing 

their computed makespan using the SI technique as the comparison reference. The processing times of all machines were 

assumed to be uniformly distributed between 1 and 40. The numbers of jobs considered are (4, 5, 7, 8, 10, 15, 20, 30, 50, 

80), or 10 in total, and the numbers of machines considered are (4, 5, 6, 10, 20, 30, 40, 70, 80, 100) or 10 in total. One 

thousand replications are generated for each of the above (10 x 10) or 100 combinations to run the 100,000 problems. We 

implemented the eight heuristics in a computer simulation program. The results were computationally obtained for each of 

the eight techniques for each of their generated problems using equations (11‒16) based on the six comparison criteria 

(𝐶1ℎ𝑘 − 𝐶6ℎ𝑘) described in step 2.3. Subsequently, job‒ and machine‒specific results were charted versus each of the six 

computed parameters for the visual comparison.  

The second phase of the analysis concerns the performance evaluation and ranking of the eight heuristic techniques 

under study. In this phase, Stage 3 and its pertaining steps (illustrated in Figure 1 and described in subsection 3.2.2) were 

implemented. This was done by following the RATMI framework in Figure 2. As described in step 3.1, the eight heuristic 

techniques (i.e., alternatives) were ranked based on C1‒C6 (i.e., criteria) to obtain their performance rankings. The results of 

the two analysis phases are presented in the following subsections. 
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Figure 2. The Framework of The RATMI Methodology (Abdulaal and Bafail, 2022) 

 

4.1 Results of Phase 1: Processing-Time-Based Comparative Analysis 

 

4.1.1 Overall Results 

 

The overall solutions by each of the seven heuristic techniques h = 1 to 7 (i.e., Palmer, CDS, Gupta, Dannenbring, Hundal, 

TD, and JJV), respectively, for the 100,000 generated problems are compared to the resulting solutions by h = 8 (i.e., SI 

technique) as the reference of the comparison, as mentioned earlier. Figure 3 summarizes and illustrates the number of 
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times the resulting solutions by the SI technique were better, equal, or worse than the solutions of the other seven 

techniques in terms of shorter processing time (i.e., makespan). 

 

 
 

Figure 3. Overall Processing-Time-Based Comparison Results of the SI Technique Versus the Other Seven Techniques in 

Solving The 100,000 Problems 

 

The results in Figure 3 show that, in general, h=8 (i.e., SI technique) outperformed or was equal to six of the studied 

techniques h=7, h=6, h=3, h=4, h=1, and h=5 (i.e., JJV, TD, Gupta, Dannenbring, Palmer, and Hundal), respectively. The 

SI technique resulted in 93.19%, 90.49%, 80.52%, 54.63%, 37.74%, and 24.83% better solutions than the other six 

techniques, respectively. Moreover, the SI technique resulted in 0.90%, 1.33%, 4.00%, 7.54%, 37.64%, and 35.72% equal 

solutions to the other six techniques, respectively. Therefore, the SI technique resulted in 94.09%, 91.82%, 84.52%, 

62.17%, 75.38%, and 60.55% better and equal solutions to the other six techniques, respectively. However, the SI 

technique underperformed h=2 (i.e., CDS) and came second to it. The SI technique resulted in only 15.63% better solutions, 

8.06% equal solutions, and 76.30% worse solutions than CDS. The overall results of the comparison based on processing 

time indicate that the recent SI technique comes second to the CDS technique in terms of processing-time performance. 

More detailed job- and machine-specific results are provided in the following subsections. 

 

4.1.2 Job-Specific Results 

 

For each problem generated, the six criteria mentioned in section 3.2 have been calculated from the perspective of jobs, and 

the results are shown in Figure 4. Figure 4(a) (job-specific results for the average total processing time (makespan) using 

technique h), Figure 4(b) (average number of SI technique’s overall processing time was shorter than other techniques), 

Figure 4(c) (average percentage of improvement), Figure 4(d) (average relative performance), Figure 4(e) (average 

percentage of error), and Figure 4(f) (average execution time). 

 

 
(a) C1                                                                                     (b) C2 
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(c) C3                                                                                     (d) C4 

 

 
(e) C5 

 

 
(f) C6 

 

Figure 4. Number of Jobs Versus Each of The Six Comparison Criteria (C1‒C6) 

 

Figure 4(a) shows that the CDS is better than all other techniques in average processing time. The Hundal and SI 

heuristic techniques are very close concerning average processing time. On the other hand, Gupta, TD, and JJV are the 

worst tetchiness in the average makespan. In  Figure 4(b), the SI heuristic is set to 100%, and the other heuristics’ relative 

performance in terms of jobs is computed. It shows that SI performs better than all other techniques in small-size problems, 

and when the number of jobs in the problem increases, the percentage of the number of times the SI is better than the other 

seven techniques. Also, the average percentage of improvement by SI compared with seven other methods is increased 

concerning the number of jobs for the Gupta, TD, and JJV techniques. At the same time, it is reduced for all other heuristics 

techniques concerning the number of jobs. That means on large-scale PFSPs, the average percentage of improvement 

between Palmer, CDS, Dannenbring, Hundal, and SI is minimal, as shown in Figure 4(c). The SI heuristic has a similar 

average relative performance as Palmer and Dannenbring. CDS and Hundal are better in average relative performance, as 

shown in Figure 4(d). 

Moreover, the same behavior is observed in the average error percentage between the best makespan and the one 

obtained from the other technique. It is clear that the CDS is the best with the lowest error percentage than Hundal and SI. 

Where Gupta, TD, and JJV techniques are underperforming, as shown in Figure 4(e). However, for the average execution 

time in milliseconds, the Dannenbring heuristic is the fastest technique, with about 9.8 milliseconds, then the SI with 11.5 

milliseconds. The CDS technique took the longest execution time, averaging about 482.1 milliseconds. Although, the 

average execution time increases dramatically with the number of jobs, as shown in Figure 4(f). However, the average 

execution time of the SI heuristic is short enough for any application. 
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4.1.3 Machine-Specific Results 

 

For all 100,000 generated problems, the machine-specific results series of each technique h are charted for each of the six 

comparison criteria as illustrated in  Figure 5(a‒f). The numbers of machines considered (4, 5, 6, 10, 20, 30, 40, 70, 80, 

100) are charted versus the average total processing time (i.e., makespan) in  Figure 5(a), the average percentage of the SI 

technique has been better than the other seven techniques in terms of shorter processing time in  Figure 5(b), the average 

percentage of improvement using the SI technique in  Figure 5(c), the average relative performance between the SI 

technique and the other seven techniques in  Figure 5(d), the average percentage of error based on the best result obtained 

from all techniques in  Figure 5(e), and the average execution time in milliseconds in  Figure 5(f). 

Results show that the eight compared techniques demonstrated similar average total processing time (i.e., makespan) 

behaviors across the experimented machine sizes, as illustrated in  Figure 5(a). Results show that the SI technique 

outperformed all other seven techniques, with produced solutions having the shortest processing time for problems of less 

than ten machines. However, for problems of more than ten machines, the CDS technique outperformed all seven other 

techniques in producing solutions with the shortest processing time. 

The average percentage of the SI technique has been better than the other seven techniques in terms of shorter 

processing time presented in  Figure 5(b); the SI technique is set to 100% for the purpose of comparison. The results show 

that the SI technique outperformed the other seven techniques, with the JJV technique being the closest to its performance. 

It also could be observed that the JJV, Palmar, Hundal, and CDS techniques demonstrated similar behavior of problems 

with more than ten machines opposite to the remaining techniques (i.e., TD, Gupta, and Dannenbring). 

For the average percentage of improvement using the SI technique presented in  Figure 5(c), the SI technique is set to 

0% for the purpose of comparison. The results show that the SI technique outperformed the other seven techniques with the 

CDS, Hundal, and Palmar techniques, demonstrating the closest performance, especially in problems of a larger number of 

machines. 

For the average relative performance between the SI technique and the other seven techniques presented in  Figure 

5(d), the CDS outperforms the SI technique. However, the SI technique performed similarly to the techniques by Palmar, 

Hundal, and Dannenbring. The results also indicate that the relative performance of all techniques gets better for problems 

above ten machines, opposite to Gupta’s technique which performs better in smaller problems of less than ten machines. 

For the average percentage of error based on the best result obtained from all eight techniques presented in  Figure 

5(e), the CDS technique outperformed all seven other techniques. The SI, Palmar, and Gupta came second to CDS, showing 

similar error percentages. The results also indicate that the percentages of errors of all techniques get lower or remain 

steady in problems of small to large machine sizes, opposite to Gupta’s technique which performs better in smaller 

problems of less than ten machines. 

The average execution time measured in milliseconds is presented in two charts in  Figure 5(f) for better visualization 

due to the larger execution time demonstrated by the CDS and JJV techniques. The results show that Dannenbring’s 

technique outperformed all seven other techniques, with the SI and TD being the closest in terms of execution time. The 

results also indicate a general increased execution time trend of all eight techniques as the number of machines in the 

problems increases, which is expected. However, dramatically increased execution time trends by the CSD and JJV 

techniques, especially in problems with more than ten machines. 

 

 
(a) C1                                                                                     (b) C2 
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(c) C3                                                                                     (d) C4 

 

 
 

(e) C5 

 

 
(f) C6 

 

Figure 5. Number of Machines Versus Each of The Six Comparison Criteria (C1‒C6) 

 

4.2 Results of Phase 2: Multi-Criteria Decision-Making (MCDM) Based Performance Evaluation 

 

Despite that, the overall results of the comparison based on processing time are presented in subsection 4.1.1. indicated that 

the recent SI technique comes second to the CDS technique; it is valuable to check how the eight studied techniques will 

perform when their performance is evaluated based on a set of more comprehensive criteria. Thus, the third stage and its 

pertaining steps (illustrated in Figure 1 and described in subsection 3.2.2) were implemented.  

The second phase of the analysis was performed following the RATMI framework in Figure 2 for the MCDM 

performance evaluation. As described in step 3.1, the eight heuristic techniques A1‒A8 (i.e., alternatives) were ranked based 

on C1‒C6 (i.e., criteria) to obtain their performance rankings. The used ranking criteria are the total processing time, total 

flow time, total idle time on jobs, total idle time on machines, total machine utilization, and total execution time, 

respectively. As mentioned earlier, equal relative importance weights of the six criteria are assumed with a value of 0.167 

(i.e., 16.7% each) for each of the six criteria, adding up to a value of 1 (i.e., 100% for all criteria). The ranking objective 

was to minimize C1, C2, C3, C4, and C6 (i.e., total processing time, total flow time, total idle time on jobs, total idle time on 

machines, execution time) and to maximize C5 (i.e., the total machine utilization), respectively. The required data based on 

the six performance criteria were computed for the 100,000 runs. Accordingly, the input decision-making matrix for the 

RATMI is formulated using equation (17), as presented in Table 2. Subsequently, following the RATMI framework 
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illustrated in Figure 2, the normalized decision-making matrix and the weighted normalized decision-making matrix were 

developed, as shown in Tables 3 and 4, respectively. The RATMI rankings were found as presented in Table 5, and the 

eight heuristic techniques are ranked in descending order based on their performance in the six criteria, as shown in Table 

6. 

 

Table 2. Input Decision-Making Matrix 
 

Ah 

Criteria C1 C2 C3 C4 C5 C6 

Weight 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 

Objective Min. Min. Min. Min. Max. Min. 

A1  3644.23 87083.97 21818.88 163761.45 38.21% 41.079 

A2  3552.51 85678.79 19682.55 158245.13 39.08% 482.114 

A3  3780.61 88954.49 24762.03 171008.66 37.02% 23.981 

A4  3660.38 86154.18 20215.57 164888.73 38.25% 9.824 

A5  3626.62 86818.40 21434.50 163081.90 38.56% 21.678 

A6  3897.00 89633.03 20991.07 173512.89 34.45% 14.015 

A7  3856.67 89820.90 21289.24 172920.99 34.98% 124.041 

A8  3636.83 86700.69 21408.89 163651.86 38.48% 11.495 

 

Table 3. Normalized Decision-Making Matrix 
 

Ah 

Criteria C1 C2 C3 C4 C5 C6 

Weight 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 

Objective Min. Min. Min. Min. Max. Min. 

A1  0.9748 0.9839 0.9021 0.9663 0.9777 0.2392 

A2  1.0000 1.0000 1.0000 1.0000 1.0000 0.0204 

A3  0.9397 0.9632 0.7949 0.9254 0.9473 0.4097 

A4  0.9705 0.9945 0.9736 0.9597 0.9788 1.0000 

A5  0.9796 0.9869 0.9183 0.9703 0.9867 0.4532 

A6  0.9116 0.9559 0.9377 0.9120 0.8815 0.7010 

A7  0.9211 0.9539 0.9245 0.9151 0.8951 0.0792 

A8  0.9768 0.9882 0.9194 0.9670 0.9846 0.8547 

 

Table 4. Weighted Normalized Decision-Making Matrix 
 

Ah 

Criteria C1 C2 C3 C4 C5 C6 

Weight 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 

Objective Min. Min. Min. Min. Max. Min. 

A1  0.1625 0.1640 0.1504 0.1611 0.1630 0.0399 

A2  0.1667 0.1667 0.1667 0.1667 0.1667 0.0034 

A3  0.1566 0.1606 0.1325 0.1543 0.1579 0.0683 

A4  0.1618 0.1658 0.1623 0.1600 0.1632 0.1667 

A5  0.1633 0.1645 0.1531 0.1618 0.1645 0.0755 

A6  0.1520 0.1593 0.1563 0.1520 0.1470 0.1169 

A7  0.1536 0.1590 0.1541 0.1526 0.1492 0.0132 

A8  0.1628 0.1647 0.1533 0.1612 0.1641 0.1425 
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Table 5. Alternative Performance Rankings 
 

Alternative 
Alternative Trace Alternative Median Similarity RATMI 

Value Rank Value Rank Value Rank 

A1 0.1471 6 0.8831 6 0.2934 6 

A2 0.1521 3 0.9129 3 0.5113 3 

A3 0.1420 7 0.8528 7 0.0731 7 

A4 0.1633 1 0.9796 1 1.0000 1 

A5 0.1505 4 0.9034 4 0.4425 4 

A6 0.1479 5 0.8873 5 0.3282 5 

A7 0.1404 8 0.8424 8 0.0000 8 

A8 0.1583 2 0.9496 2 0.7813 2 

 

Table 6. Overall Performance Rankings in Descending Order 
 

Alternative Rank 

A1 1 

A2 2 

A3 3 

A4 4 

A5 5 

A6 6 

A7 7 

A8 8 

 

4.3 Discussion 

 

The results of the conducted comparison based on processing time in the first phase of analysis provide evidence that the 

recently proposed SI technique comes second to the CDS technique based on the six comparison criteria. Also, the more 

detailed job- and machine-specific results indicated that some of the eight techniques were better than others in each of the 

six comparison criteria. It was also observed that some of the techniques behaved differently in smaller and larger problem 

sizes in terms of the number of jobs and machines. Results indicate that the size of problems determines the suitable 

technique for solving flow‒shop sequencing problems, especially the number of ten jobs and ten machines that seemed like 

a threshold to consider. 

Results of the study’s second phase following the MCDM approach using RATMI revealed the performance rankings 

of the eight heuristic techniques. The ranking process was based on their overall performance in total processing time, total 

flow time, total idle time on jobs, total idle time on machines, total machine utilization, and total execution time. The 

objective was to find the ranking that minimizes all of them and maximizes the execution time. Results revealed that 

Dannenbring’s technique is the first best, followed by the SI technique as the second best, followed by the CDS, Hundal, 

TD, Palmer, Gupta, and JJV techniques. 

The results of this study help in choosing the heuristic technique that optimizes the time spent and resources utilized 

using a particular number of machines to decide what jobs to do and in what sequence. Solving flow-shop problems 

minimizes the makespan or the time it takes for all jobs to be completed. This, in turn, helps reach for better sequencing in 

workshop scheduling that reduces production costs and boosts output. Furthermore, the performance rankings of the 

techniques for solving permutation flow-shop sequencing problems provide practical insights into their performance in 

different problem sizes. This, in turn, helps the industrial and manufacturing sectors schedule activities efficiently and 

quickly to manage their resources better. 

 

5. CONCLUSIONS 

 

This paper focuses on comparing heuristic methods for addressing permutation flow-shop sequencing issues. Flow-shop 

issues reduce the time it takes to do all jobs, lowering manufacturing costs and increasing productivity. Therefore, various 

heuristics have been created to help find a good and fast solution. However, new methods must be tested for performance 

versus classical ones. Therefore, this paper aims to conduct a comparative analytical, computational study of heuristic 
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techniques for solving PFSPs and evaluating their performance. The performance of eight PFSP methods in solving 

100,000 generated problems using computer simulation software was compared in two main analysis phases.  

The comparison based on processing time in the first phase of the analysis showed that the CDS technique 

outperforms the recently proposed SI technique on the six comparison criteria. In addition, job- and machine-specific data 

showed that some of the eight approaches performed better in each of the six comparison criteria. In terms of jobs and 

machines, several strategies operated differently in smaller and larger problem sizes. Results show that problem size should 

determine the best flow-shop sequencing technique to be used, especially the number of ten jobs and ten machines that 

appeared like a critical threshold where the performance of techniques starts behaving differently. 

The eight heuristic approaches’ performance rankings were disclosed in the study’s second phase using RATMI. 

Their total processing time, flow time, idle time on jobs and machines, machine utilization, and execution time were used to 

rank them. The goal was to find the ranking that minimizes them all and maximizes machine utilization. Results showed 

that Dannenbring’s method is the best, followed by the SI technique, CDS, Hundal, TD, Palmer, Gupta, and JJV 

approaches. 

This paper puts forward a comparative analytical and computational approach, including the used comparison and 

performance evaluation criteria, methods, and the MCDM approach using RATMI. Moreover, the implications of this 

paper include the revealed performance rankings of the techniques for solving permutation flow-shop sequencing problems 

and the practical insights on their performance in different problem sizes. The findings of this paper assist the industrial and 

manufacturing sectors in scheduling activities efficiently and quickly to manage their resources better.  

Despite that, the findings of this study are considered representative of the used problem sizes in terms of the number 

of jobs and machines; reconducting the analysis following the same or different comparison approaches considering 

different sets of job and machine sizes is a research direction to confirm the results further. Furthermore, the resulting 

performance rankings in this paper using MCDM were based on equal importance weights of the used criteria using 

RATMI. Therefore, reconducting the evaluation using other MCDM techniques and using the same or different set of 

evaluation criteria with varying weights of importance depending on the specific application context of the methods is a 

future research direction that might yield further insights. Another future research direction is to develop a solution method 

by combining decision trees and meta-heuristic algorithms. Finally, this study focused on comparing the eight PFSP 

techniques. Therefore, investigating the performance of other and future-developed PFSP methods is recommended for 

future research studies.  
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