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Manufacturing key metrics are a useful approach for evaluating shop floor operations. The collaboration between operators 

and robots is essential in maintaining a resilient performance within smart and flexible manufacturing systems. For effective 

collaboration, both operators and robots must possess varying degrees of resilience, including full resilience, partial resilience 

and the ability to handle total disruptions. In this paper, lead time is considered a significant key metric. When the system is 

fully resilient and dependable, it achieves the optimal lead time. Consequently, lead time serves as a benchmark for evaluating 

the system's performance. However, if the robot experiences significant performance issues, it can negatively impact the 

cycle time, resulting in longer lead times. The discrepancy between the optimal lead time and the lead time obtained during 

partial or complete disruption is subtracted from the optimal lead time. To ensure the validity of the findings, mathematical 

equations are utilized in combination with other relevant data. This approach contributes to the knowledge base in the field. 

Finally, the paper will provide suggestions for future research endeavors.. 
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1. INTRODUCTION 
 

Manufacturing enterprises move forwards along with smart technological paradigms. However, there are certain issues that 

might hinder firms from achieving competitiveness. On the one hand, the unexpected events to the manufacturing processes 

cause loss in the production levels. On the other hand, the interactions between humans and advanced automated equipment 

in the shop floor need to be considered further. Operator-robot collaboration is a field of study that focuses on designing, 

developing, and utilizing robots that can work effectively and safely alongside operators (Panagou, 2023). These collaboration 

systems are designed to facilitate task-sharing and learning between operators and robots. Collaborative robots are specifically 

designed to physically cooperate with operators (Broum and Šimon, 2019). As noted by Lin and Lukodono (2021), the 

integration of operator and robot capabilities through collaboration is crucial to achieve optimal utilization of their respective 

strengths and weaknesses in manufacturing systems. This partnership allows for the supplementation of each other's abilities, 

resulting in a more productive and efficient production process. However, the performance of collaboration systems may be 

impacted by disruptive situations, such as those encountered in other manufacturing systems. Therefore, it is essential to 

maintain the sustainability and resilience of collaborative systems. Operator-robot collaboration systems have the ability to 

maintain a consistent cycle time when performing assigned tasks, even in the presence of disruptions or variations in inputs 

or resources. However, disruptions or variations can cause delays or interruptions in the cycle time, impacting the efficiency 

and consistency of task completion. As a result of these disruptions, the time required to complete tasks or deliver 

products/services can be extended, resulting in increased lead times. Therefore, it is imperative to effectively handle these 

challenges and utilizing key metrics presents a viable strategy to accomplish this goal. The evaluation of shop floor operations 

through metrics has garnered significant attention in both research and practical applications. Numerous studies have focused 

on the development and implementation of metrics to assess and improve operational performance in manufacturing 

environments. For instance, Meddeb et al. (2023) introduced a monitoring system tailored specifically for automated 

weighing and bagging machines, incorporating a user-friendly human-machine interface to enhance system performance. Qin 

et al. (2023) proposed a resilient flexible manufacturing system design method that involves route reconfiguration and 

increased storage capacity to absorb losses and promptly restore the system in the face of disruptions. Bhongade et al. (2023) 

investigated rescheduling methods in flow-shop manufacturing systems to mitigate disruptions, assessing the influence of 
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factors such as initial solutions, failure duration and rescheduling techniques on performance. Lead-time sensitivity and 

disruption risks were given priority in the study conducted by Taghavi et al. (2023). Industrial operations have undergone a 

significant transformation in the era of Industry 4.0, with a strong emphasis on integrating smart technologies and fostering 

collaboration between humans and robots. 

However, the assessment of resilient collaborative system performance based on lead time had not been addressed fully 

yet in the earlier articles. Therefore, there is a need to propose an approach to evaluate the resilient collaborative system 

performance level in terms of lead time. The primary objective is to thoroughly evaluate the impact on lead time effectiveness, 

particularly in partially resilient or completely disrupted conditions. In this article, a methodology is proposed, and the 

following assumptions are made. It is assumed that in fully system-resilient conditions, the lead time is considered the 

benchmark and target value. Conversely, in cases of partial or total disruption within collaborative systems, fluctuations in 

the lead time are experienced. As a result, to evaluate performance, the deviation in lead time resulting from disruptions is 

calculated and subtracted from the yield value of lead time.  However, it is important to acknowledge that the current approach 

does not account for post-disruption recovery.  Nevertheless, the findings of this research would be highly valuable to 

operations managers, manufacturers, and scientific researchers in the field. 

The structure of this paper is outlined as follows. At the beginning, the introduction section discusses the research aim, 

objectives, and research significance. The second section contains a literature review, which explores three domains related 

to the research topic, followed by the research contribution section. Subsequently, the research methodology is presented, 

followed by the findings and discussion. Lastly, the paper concludes with a conclusion section discussing the possibility of 

future research.  

 

2. LITERATURE REVIEW  
 

The literature review explored previous relevant studies across three domains: manufacturing key metrics employed in shop 

floor operations, the dynamics of human-robot collaboration in manufacturing systems, and the significance of resilience in 

operator-robot interactions.  

Figure 1 visually represents the structure of the literature review within these domains. 

 

 
Figure 1. Research Gap 

 

2.1 Manufacturing key metrics 

 

Metrics play a fundamental role in quantifying and analyzing the performance of shop floor operations. Researchers and 

practitioners have recognized the importance of selecting appropriate metrics that align with the specific goals and objectives 

of manufacturing organizations. Metrics such as throughput, cycle time, utilization, quality metrics, and cost metrics have 

been widely adopted to measure and evaluate different aspects of shop floor operations. One notable study by Han and 

McGinnis (1989) introduced shop operating characteristics curves, which provide a visual representation of the relationship 

between various control rules and shop configurations. This work laid the foundation for evaluating and optimizing the 
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performance of manufacturing systems through graphical analysis of metrics. Serkar et al.(1991) evaluated a double shuttle 

automated storage and retrieval system's performance, proposing a four-command cycle for increased throughput. Ulusoy 

and Bilge (1992) focused on minimizing makespan in the scheduling problem, specifically in the context of material handling 

and overall performance optimization. Perona and Portioli (1996) proposed an enhanced loading model that considers task 

allocation and resource utilization metrics to improve operational efficiency. Their work emphasized the importance of proper 

task allocation to achieve optimal performance on the shop floor. Parasuraman et al. (2000) developed a model for 

determining appropriate levels of automation in human-machine systems, taking into account metrics related to human 

performance consequences. This study highlighted the significance of finding the right balance between human and machine 

involvement based on performance metrics. Olsen and Goodrich (2003) introduced metrics for evaluating human-robot 

interactions, such as neglect tolerance, task effectiveness, and robot attention demand. These metrics aim to guide the design 

of effective human-robot interfaces that optimize task performance while considering the role of human attention and 

interaction effort. In Kim's (2006) study, market responsiveness and productivity were enhanced in flexible manufacturing 

systems through the application of neural networks and simulation, leading to superior performance in test scenarios. 

Chaudhry et al. (2011) employed a spreadsheet-based genetic algorithm to minimize completion time in the simultaneous 

scheduling of machines and automated guide vehicles within flexible manufacturing systems. Gröger et al. (2013) introduced 

the operational process dashboard for manufacturing to improve information availability and decision-making on the shop 

floor, enhancing agility in the manufacturing industry. Ho (2015) presented a system dynamics model for improving make-

to-order production performance, considering factors like time delays, shortage handling, and resource optimization. Hwang 

et al. (2017) developed an IoT-based performance measurement system for smart factories, enabling real-time data capture 

and analysis to enhance manufacturing performance. Odedairo and Nwabuokei (2018) discussed the development of a 

decision support tool using discrete event simulation to measure past work-in-process, cycle time, and performance in small 

and medium-scale industries. Hellebrandt et al. (2019) proposed a human-centered approach to performance management on 

the shop floor, integrating worker perspectives and motivational gamification elements. The research conducted by Torres et 

al. (2020) investigates the consequences of incorporating smart technologies and digital features on the performance of shop 

floor management in the context of smart manufacturing. It provided a thorough analysis of the implications of these factors 

and underscored their substantial influence in enhancing overall operational performance. 

Gutjahr et al. (2021) achieved exceptional performance in the cyclic flexible flow shop, significantly reducing AGV 

count and optimizing makespan with heuristic approaches. Zhou et al. (2021) investigated the impact of man-machine ratio 

on the performance of a one-person-multi-machine series production line in lean production systems. Ohlig et al.(2023) 
demonstrated that gamified information provisioning enhances operational performance and work motivation within a shop 

floor setting. Boschetti et al. (2023) investigated the effects of a geometric approach strategy for human-robot collaborative 

systems on system performance. Meddeb et al. (2023) introduced a monitoring system tailored for automated weighing and 

bagging machines, incorporating a user-friendly human-machine interface to improve system performance. 

 

2.2 Operator -Robot Collaboration  

 

Research on human-robot collaboration in manufacturing systems has garnered significant attention since its inception. Early 

studies by Paul and Nof (1979) compared the work methods of robots and human operators, favoring robot time and motion 

as a more suitable evaluation method. Ghosh and Helander (1986) addressed task allocation challenges between humans and 

robots, focusing on product design and specialized maintenance requirements. Abdel-Malek (1989) delved into optimizing 

robot base location to minimize cycle time in manufacturing cells. Rosenbrock (1990) advocated for responsible automation, 

emphasizing machines as tools to assist humans rather than control them. Advancements in the field continued as researchers 

explored various aspects of human-robot collaboration. Tan et al. (2009) provided insights into enhancing productivity and 

safety through human factors in cellular manufacturing systems. Tompkins et al. (2010) emphasized the flexibility and 

customization of manufacturing systems, combining machining, assembly, and material handling for diverse product output. 

Further investigations focused on the dynamics of human-robot collaboration. Zanchettin et al. (2015) proposed a 

kinematic control strategy to ensure productivity and safety in collaborative manufacturing environments. Nilakantan and 

Ponnambalam (2016) optimized U-shaped assembly lines with robots and a particle swarm algorithm, aiming to minimize 

cycle time and improve production efficiency. Perona et al. (2016) proposed a method utilizing workload control and logistic 

operating curves to effectively reduce and stabilize manufacturing lead time. Botti et al. (2017) developed a model integrating 

ergonomics and lean principles, enhancing productivity by integrating manual workers and robots while optimizing assembly 

cycle time. Lee et al. (2018) proposed an augmented reality-based framework for human-robot collaboration, aiming to 

improve communication, reduce errors, and enhance production flexibility in a semi-automated process for electric motor 

manufacturing. Bauters et al. (2018) introduced a vision-based system for workstation analysis, facilitating anomaly detection 

and continuous improvement while reducing cycle time. Darvish et al. (2018) developed a flexible human-robot cooperation 

architecture to address interaction challenges in Industry 4.0. Lee et al. (2019) introduced hybrid assembly systems for 
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flexible manufacturing, highlighting the significance of human-robot collaboration in improving productivity and adaptability 

in upcoming manufacturing settings. Nikolakisa et al. (2018) suggested a hybrid hierarchical model to allocate tasks in 

environments where humans and robots work together, with a focus on dynamic scheduling to improve the efficiency and 

adaptability of manufacturing processes. It introduces a manufacturing system that combines human workers and robots, 

enabling them to collaborate on flexible assembly tasks. The paper also presents a decision-making framework that considers 

multiple criteria for real-time scheduling and re-scheduling in response to unexpected events. Casalino et al. (2019) present 

an optimal scheduling method for collaborative assembly tasks using time Petri nets, minimizing idle time and 

accommodating variations in manufacturing processes. The approach is validated through experiments on a small assembly 

line with robots and a human operator. Zhang et al. (2019) addressed the optimization of energy-efficient U-shaped robotic 

assembly line balancing problems using a multi-objective approach and a modified bee colony algorithm. Malik et al. (2020) 

discussed the use of virtual reality and event-driven simulation to estimate human-robot cycle times for designing 

collaborative workspaces in manufacturing. Koltai et al. (2021) employed mathematical programming models to investigate 

how the assignment of tasks and cycle times are affected when robots are introduced to assembly lines operated by humans. 

Fast-Berglund and Thorvald (2021) conducted an examination of the variations in cycle time observed during collaborative 

interactions that involved both humans and robots performing knowledge-based tasks. Li et al. (2021) introduced an 

innovative method that employed a multi-objective migrating bird optimization algorithm to address the challenge of cost-

oriented assembly line balancing with collaborative robots. Quenehen et al. (2021) explored the integration of lean techniques 

and collaborative robots, resulting in reduced cycle time and lead time, thus improving operational performance. Cardoso et 

al. (2021) assessed the impact of collaborative robotics on productivity, ergonomics, and worker well-being, leading to 

reduced production times and improved working conditions. Keshvarparast et al. (2023) proposed a bi-objective optimization 

model for collaborative assembly lines with cobots to minimize cycle time and physical workload while considering 

workforce diversity. Gusmao Brissi et al. (2022) reviewed the interactions between robotic systems and lean principles in 

offsite construction, highlighting benefits such as enhanced efficiency and reduced cycle time. Marinelli (2022) investigated 

synergies between lean production and human-robot collaboration in industrialized construction, focusing on waste reduction 

and improved cycle time. Liau and Ryu (2022) presented a framework to improve mold assembly using collaborative robots, 

prioritizing ergonomics and human ability. Chutima (2023) conducted a comprehensive review on assembly line balancing 

with cobots, highlighting their crucial role in enhancing resilience, disrupting traditional operations, and improving 

performance in manufacturing systems. Erol (2023) explored an energy-efficient assembly line balancing problem with 

human-robot collaboration. It investigates the integration of robots in assembly lines to enhance resilience, disrupt traditional 

operations, and improve performance in terms of flexibility, productivity, safety, and energy efficiency. Kim and Lee (2023) 

investigated the transformation occurring in mass customization research. It involved an examination of the scientific 

communities involved, tracking changes over time, and exploring the impact of emerging technologies, such as the 

collaboration between humans and robots. Further advancements have been made in optimizing collaboration and addressing 

specific challenges. Li et al. (2023) developed models and algorithms to optimize task assignment and worker-robot allocation 

in the U-shaped assembly line balancing problem with collaborative robots.  

 

2.3 Manufacturing Resilience  

 

Zieba et al. (2010) conducted a study on resilient human-machine cooperation and proposed the use of adjustable autonomy 

and human-machine cooperation as methods to achieve system resilience. They emphasized the importance of considering 

affordances and introduced three indicators to assess different aspects of resilience. The study aimed to optimize human-

robot interaction and develop dynamic systems capable of anticipating, reacting, and recovering from errors and disturbances. 

Germs (2012) investigated order acceptance and order release strategies to optimize the order pool in make-to-order 

production systems, aiming to achieve shorter and more reliable delivery times. The effects of operational disruptions on 

production lead times are investigated by Finke et al. (2012), with a focus on deviations in task processing time. Emphasis is 

placed on the impact of lead time variability on overall system performance, accompanied by a discussion on the utilization 

of quantitative analysis and mitigation strategies. Ouedraogo et al. (2013) proposed a functional architecture to learn from 

the resilience of human-machine systems. It defines resilience, presents indicators for assessing it, and discusses learning 

from resilience through a feedback-feedforward architecture. Charalambous et al. (2015) investigated organizational human 

factors for the effective implementation of human-robot collaboration, including enhancing resilience in manufacturing. The 

role of cooperation in supporting resilience in human-agent systems was examined by Chiou and Lee (2016). It was found 

that the cooperativeness of automated agents had a direct influence on human agents, highlighting the importance of 

considering this factor in the design and evaluation of teams involving autonomous agents. Wang et al. (2019) proposed a 

robust scheduling optimization model for flexible manufacturing systems that accounts for uncertain machine failures. A 

mixed-integer linear program is applied to utilize threshold scenarios to ensure production due dates are achieved within a 

certain bound. Romero and Stahre (2021) introduced the "Resilient Operator 5.0" concept and Operator 4.0 typology, aiming 
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to create smart and resilient manufacturing systems from a human-centric perspective. Cortés-Leal et al. (2022) proposed the 

maintenance 5.0 framework, integrating emerging technologies and human workers to enhance the resilience of physical 

assets in smart manufacturing. Alexopoulos et al. (2022) developed a method to quantify resilience in manufacturing systems, 

demonstrating its application during the COVID-19 pandemic. Yang et al. (2022) discussed the critical role of human-

machine interaction in Industry 5.0, analyzing potential challenges and opportunities. Pupa et al. (2022) proposed a resilient 

task scheduling framework for effective human-robot collaboration in the industry, considering uncertainties and deviations 

and promoting parallel work. 

The challenge of achieving smooth and resilient human-machine teamwork for Industry 5.0 was discussed, with a 

proposal made to utilize the joint cognitive systems approach, actor-network theory, and ethically aware design (Kaasinen et 

al., 2022). Lead-time sensitivity and disruption risks are given priority in the study conducted by Taghavi et al. (2023). Qin 

et al. (2023) proposed a method for resilient FMS design involving route reconfiguration and increased storage capacity to 

absorb losses and restore the system promptly in the face of disruptions. Ojstersek et al. (2023) utilized simulation modeling 

tools to evaluate the importance of sustainable manufacturing within the context of human-robot collaboration. Pizoń and 

Gola (2023) emphasized the need for developing a roadmap for the human-machine relationship in Industry 5.0. 

 

3. RESEARCH CONTRIBUTION  
 

Based on the existing literature review, this study makes a significant research contribution by identifying key metrics for 

evaluating resilience in the shop floor, with a specific focus on smart, flexible manufacturing systems. The evaluation of 

resilient performance in human-robot collaboration becomes crucial when unexpected events disrupt the ability of one or 

both elements to perform their tasks. This study highlights the importance of these key metrics and discusses their role in 

maintaining system resilience. 

In the context of smart, flexible manufacturing systems, the collaborative system's effectiveness is often measured by 

its ability to meet delivery time requirements. Therefore, the lead time emerges as a critical key metric in assessing and 

enhancing resilience. This research opportunity aims to evaluate the impact of lead time on resilient robot-operator 

collaboration within a smart, flexible manufacturing system. 

 

4. RESEARCH METHODOLOGY  
 

The research aims to evaluate the resilient collaboration system between a robot and an operator. Figure 2. illustrates these 

two components work together in tandem, but it is important to acknowledge the possibility of disruptions affecting either or 

both elements within the system.  

 
 

Figure 2. Proposed Approach 
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It is crucial to note that any interruption or disruption of a task can have a significant impact on the cycle time, leading 

to an increase in lead time. As lead time serves as a key metric for measuring the resilience of a collaboration system. In the 

research design study, mathematical equations are integrated as a fundamental component to assess the resilience of the 

collaboration system between a robot and an operator. These equations serve as quantifiable measures to evaluate the system's 

performance in terms of resilience. 

Equation (1) represents the cycle time for operators in the collaborative manufacturing system. The parameter CTOP 

specifically quantifies the time required for operators to complete their tasks.  

 

CTOP = CT (1) 

 

while the cycle time of the robot CTRO can be calculated in Equation (2): 

 

CTRO = ξ CT (2) 

 

The parameter ξ is a non-negative value that is strictly less than 1, representing the proportion of workload assigned to 

the robot. To account for disruptions and resilience, Equation (3) calculates the overall cycle time, considering both operators 

and robots.  

 

CTOP-RO = [ ψ (CTOP + CTRO)] x δ (3) 

 

The parameter ψ represents the status of the collaborative system, indicating whether it is resilient or disruptive. It can 

take the following values: 

 

ψ = {
1, if the collaborative system is resilient

    0, otherwise                                                         
 (4) 

 

while δ a factor used to balance the cycle time, where 0 > δ > 0.5. 

Equations (5) and (6) further explore the cycle time difference between operators and robots.  

 

CTOP = ψ CT (1 - λ) (5) 

 

CTRO = ψ ξ CT (λ) (6) 

 

The variable λ, defined using a piecewise function, determines whether the system is operated manually or 

automatically.  

 

λ  = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑑 𝑚𝑎𝑛𝑢𝑎𝑙𝑙𝑦
0, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑑 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑

 (7) 

 

Equation (5) calculates the cycle time for operators based on ψ CT and (1 - λ), while Equation (6) calculates the cycle 

time for the robot using ψ ξ CT and λ. According to Womak et al. (1990), the computation of lead time can be achieved 

through the implementation of equation (8): 

 

L AC = CT x WIP (8) 

 

This equation establishes a direct correlation between the lead time (LAC), the cycle time (CT), and the work in progress 

(WIP) residing between workstations within the shop floor. By multiplying the cycle time by the work in progress, equation 

(6) enables precise quantification of the lead time within a collaborative manufacturing system. 

Equations (9) and (10) focus on monitoring and evaluating lead time in the context of collaboration between robots and 

humans. Equation (9) calculates the yield lead time (LTR) by subtracting the deviation in lead time (∆L) from the baseline 

lead time.  

 

LTR = LTR- ∆L (9) 
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The yield lead time represents the optimum lead time achievable when the collaboration system is fully resilient. 

Equation (10) computes the deviation in lead time (∆L) by subtracting the actual lead time (LAC) from the target lead time 

achieved when the system is fully resilient. 

 

∆L = L AC – LTR (10) 

 

Collecting and analyzing lead time data, along with factors such as start and end times, delays, and disruptions, helps 

identify areas for improvement and evaluate the effectiveness of process improvements. The target lead time achieved when 

collaboration is fully resilient serves as a benchmark for evaluating the system's performance and identifying optimization 

opportunities. 

The generation of a performance resilience curve visually demonstrates the interconnectedness of resilience and 

performance in the collaborative manufacturing system. This curve aids in identifying vulnerable points and guiding decision-

making to enhance system resilience and performance, ultimately improving efficiency, productivity, and overall system 

performance. Table 1 represents the description of nomenclature and symbols for mathematical equation.  

 

Table 1. List of Nomenclature and Symbols 
 

Symbol Description 

CT Cycle Time 

CTOP Operator Cycle Time 

CTRO Robot Cycle Time 

CTOP-RO Collaborative System Cycle Time 

L AC Actual Lead time 

LTR Target Lead Time 

∆L Deviation in Lead Time 

WIP Work in Progress 

δ a Factor used to Balance the Cycle Time 

λ a piecewise function 

ξ workload proportion assigned to the robot 

ψ status of the collaborative system 

 

It illustrates the key components and their relationships, including the calculation of cycle time for operators and the 

collaborative robot, the consideration of disruptions and resilience, the assessment of lead time, and the evaluation of 

performance using a resilience curve. This visual representation aids in understanding the methodology and serves as a guide 

for analyzing and optimizing collaborative manufacturing systems. 

 

5. FINDINGS AND DISCUSSION  
 

The ensuing section discusses the results of the proposed model and provides valuable insights into the resilience and 

performance of flexible manufacturing systems. It includes a thorough analysis of the probabilities of systems' resilience 

performance, as well as the effects of cycle time and lead time, with implications for future research and practical applications. 

 

5.1 Disruption and Resilience Probability 

 

The possibilities of achievement the smart flexible manufacturing systems resilience performance based on human-robot 

interactions can be described in. The likelihood of collaborative systems achieving resilience performance under different 

scenarios of human-robot interactions is shown in Table 2.  
 

To estimate the likelihood and impact of disruptions, Table 3 presents a discrete probability distribution function. This 

function represents the probabilities associated with different numbers of disruptions. The variable (X) represents the number 

of disruptions, while f(x) represents the probability of observing (X) disruptions. 
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Table 2. The Probability of System 

 

 

Probabilities  

 
 

Robot 
 

Operator 
 

Collaborative System 

1st Scenario Resilient Resilient Fully Resilient 

2nd Scenario Resilient Disruptive Partially Resilient 

3rd Scenario Disruptive Resilient Partially Resilient 

4th Scenario Disruptive Disruptive Fully Disruptive 

 

This distribution can be used to assess the likelihood and potential impact of disruptions on system performance. For 

example, according to the table, there is a 25% chance of experiencing no disruptions (X = 0), a 50% chance of encountering 

one disruption (X = 1), and a 25% chance of facing two disruptions (X = 2). 

 

Table 3. Discrete Probability Distribution. 

 

X 0 1 2 

f(x) 0.25 0.5 0.25 

 

Table 4 provides probability metrics specifically for the disruptive scenarios. These metrics offer insights into the 

characteristics of the disruptive system, including the mean, variance, and standard deviation.  

 

Table 4. Disruption Probability Metrics 
 

Probability Metrics Value 

Mean 1 

Variance 0.5 

Standard Deviation 0.7 

 

These metrics assist in quantifying the mean number of disruptions, the degree of variability in disruption values and 

the extent to which values deviate from the mean. 

The responsibility of decision-makers in prioritizing the resilience and long-term sustainability of the system cannot be 

overstated. It is imperative for them to fully comprehend the implications of disruptions on system performance, particularly 

the resulting increase in cycle time. In this case, the mean represents an average of 1 disruption, while the variance reflects 

the spread or variability of disruptions, measured at 0.5. Additionally, a standard deviation of 0.7 provides insight into the 

dispersion of disruptions around the mean. 

To minimize disruptions and optimize cycle time, decision-makers need to undertake a comprehensive analysis of the 

probability distribution and its associated metrics. This rigorous examination equips them with the necessary information to 

make well-informed choices regarding system design and operation. By leveraging this understanding, decision-makers can 

navigate the delicate balance between reducing disruptions, fostering resilience, and ensuring consistently optimal 

performance. 

Decision-makers bear a critical responsibility in prioritizing the impact of disruptions on system performance, 

encompassing the subsequent increase in cycle time for both the robot and the operator. By meticulously scrutinizing the 

probability distribution and related metrics, decision-makers can make informed choices that not only mitigate disruptions 

but also cultivate resilience and safeguard the system's long-term sustainability. 

Through their discerning decision-making and strategic actions, decision-makers guide the system toward attaining and 

sustaining optimal performance. Their ability to navigate these complexities with acumen and prudence is instrumental in 

shaping the system's triumph and endurance. 
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5.2 Cycle Time Analysis  

 

The evaluation of cycle time in a smart flexible manufacturing systems based on the disruption and resilience probability. 

Figure 3 presents the estimated values of cycle time, which vary significantly and have been significantly affected by 

disruptive situations and fully or partially resilient systems.  

 

 
 

Figure 3. Cycle Time 
 

In the case of a fully disrupted system, all workload stations stop, whereas in partially or fully resilient systems, the 

workload can be restored. Achieving the optimum cycle time is possible in a resilient system where operator performance 

can improve the skill and cognitive abilities of the operator.  

It can be noted that the cycle time is less for the robot when it operates without human engagement. However, the cycle 

time reaches a minimum when the human works alongside the robot. The resilience of the system plays a significant role in 

reducing cycle time. The findings of the study highlight the importance of considering the impact of disruptive situations and 

system resilience on cycle time in a smart flexible manufacturing system.  

Improving the skills and cognitive abilities of the operator and enhancing the system's resilience can lead to a reduction 

in cycle time and greater efficiency in a smart flexible manufacturing system.  Based on the output, There is an opportunity 

to explore the integration of cutting-edge technologies, such as artificial intelligence and machine learning, to elevate the 

performance and reliability of flexible manufacturing systems.  

The integration holds the potential to achieve further reductions in cycle time and enhance overall system efficiency. 

Additionally, it can investigate the integration of human-robot collaboration to achieve optimal cycle time in a smart flexible 

manufacturing system operations. 

 

5.3 Lead Time Performance 

 

The performance of a flexible manufacturing system that entails collaboration between humans and robots, with a focus on 

lead time. The study introduced the concept of yield lead time, which signifies that the optimal lead time can be achievable.  

Figure 4 illustrates the actual lead time based on robot performance tasks and the difference between it and the yield 

lead time when human workers are disrupted. The results indicate partial resilience of the system, along with measures taken 

to address unexpected events affecting human workers.  

The findings emphasize the significance of considering the system's resilience to disruptions such as labor strikes or 

power outages to ensure sustainable performance and minimize disruption effects on lead time.  

The resilience curve presented in Figure 5 depicts the system's response when the robot is disrupted, and the human 

worker takes over the task to continue the system's work. The graph highlights a significant gap between the yield lead time 
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and actual lead time, indicating the impact of disruptions on the system's performance. The emphasis lies in recognizing the 

value of the resilience curve as a tool to understand how the system responds to disruptions and identify factors that contribute 

to resilience.  

It can be highlighted the potential benefits of human-robot collaboration in flexible manufacturing systems. The use of 

advanced technologies, such as artificial intelligence and machine learning, can further improve the resilience of the 

production process and reduce the impact of disruptive events on lead time. The results underscore the importance of giving 

equal attention to both lead time performance and resilience aspects in flexible manufacturing systems.  

The resilience curve and the use of advanced technologies can enhance the system's resilience and minimize the impact 

of disruptive events on lead time, ultimately leading to greater efficiency and productivity in manufacturing processes. It can 

be provided guidance to decision-makers in the manufacturing industry to optimize the performance of their systems and 

improve their resilience to disruptions.  

 

 
 

Figure 4. System Performance (Partially Resilient; Robot Resilient, and Operator Disruptive) 
 

 
 

Figure 5. System Performance (Partially Resilient; Operator Resilient and Robot Disruptive) 
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5.4 Remarks and Outlook 

 

The outcomes of this research align with the findings of previous studies, demonstrating consistency in the observed results.  

Moreover, the present study suggests that the approach outlined in the work of Quenehen et al. (2021) can be extended to 

incorporate additional lead time. Promising future prospects involve expanding the scope of this research to encompass the 

integration of recovery processes. 

 

6. CONCLUSION 

 

To sum up, the study highlights the significance of manufacturing key metrics in evaluating resilient shop floor operations. 

The findings indicate that lead time is a capable metric for assessing the resilient of operator-robot collaboration in a smart 

flexible manufacturing system. The output of this study encourages to conduct further research in this field. Although the 

limitation in this research should be acknowledged. It is important to point out the need for further research to address the 

recovery from unexpected events and to develop reliable models through experimental and numerical analysis. 

In addition, the study suggests that future investigations should consider integrating safety and ergonomics 

considerations into the evaluation of resilient manufacturing systems. The collaboration between robots and humans offers 

significant potential for risk assessment and monitoring. Robots equipped with sensors and data collection capabilities can 

gather real-time data on environmental factors, structural conditions, and potential hazards. This data empowers humans to 

make well-informed decisions in risk management and resilience-building. Further research can focus on optimizing the 

collaboration between robots and humans, exploring ways to enhance the effectiveness of data collection, analysis, and risk 

modeling in this partnership. 
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