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Rideshare platforms are an example of economies of sharing where ride requests initiated by riders are fulfilled by car owners 

through the platform that connects both of them. When demand for a ride is initiated by the customer, the platform checks 

service providers' (car owners) availability and assigns a fare (ride price) that both the ride requester and provider should 

agree on to complete the transaction, and the ride service is fulfilled. In this research, optimal pricing strategies for ride-share 

platforms are considered. The optimal control approach is used to first develop differential equations to model the dynamics 

of the number of ride requests and for the price rate. Second, we model the total profit as a function of a linear revenue and a 

nonlinear cost. The optimal rate of change in the ride price is then obtained. Finally, a numerical example and extensive 

sensitivity analyses not only provide insights into the effect of the system parameter on the model but also lead to managerial 

implications to help companies determine the best price for each ride. 
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1. INTRODUCTION 
 

A sharing economy is a concept that refers to the collective consumption of goods and services. It refers to the peer-to-peer 

sharing of resources, from goods and services to labor, and is made possible through digital platforms such as apps and 

websites, Schor (2016). 

There is nothing new about sharing; people have shared their goods since they first started living together in 

communities, Schor (2014), Belk (2010, 2014a, 2014b). Recently, the sharing economy has become increasingly popular as 

people are looking for more affordable alternatives to traditional products and services. It has also opened up new 

opportunities for entrepreneurs to create businesses built on the sharing model. Examples of sharing economy activities 

include peer-to-peer car sharing, such as with Uber and Lyft; peer-to-peer room rentals, such as Airbnb; and peer-to-peer 

labor, such as TaskRabbit.  

Sharing economy growth will continue without a doubt. Not only are the costs of transportation and other services 

becoming more affordable but the convenience and flexibility of shared services make it an attractive option for many people. 

Due to the growing awareness of the benefits of the sharing economy, this trend is expected to grow in the future, Baruffati 

(2023). 

The latest data suggest that private vehicles are used for only 5% of their lifetime, which is a staggering statistic. This, 

combined with the fact that there are fewer requirements to drive for ride-sharing services, means that there is a greater supply 

of rides than ever before. This is excellent news for those who are looking to save money on transportation costs.  

On short notice, dynamic ride-share systems connect travelers with similar itineraries and schedules. By reducing the 

number of vehicles used for personal travel and improving the utilization of available seat capacity, these systems may provide 

significant societal and environmental benefits. A successful dynamic ride-share system requires effective and efficient 

optimization technology that matches drivers and riders in real time, Agatz et al. (2012). 

For instance, Uber Technologies Corporation began as a ride-sharing company to disrupt the traditional taxi industry. 

The company's net revenue has increased 319 times in nine years, from 0.1 billion U.S. dollars in 2013 to 31.9 billion U.S. 

dollars in 2022. The number of trips Uber drivers completed in 2022 was 7.6 billion, an increase of 20.6% over 2019. In 

2022, Uber had 131 million users, up 11% from last year. Uber Eats had 85 million users, Iqbal (2023). 

Ride-sharing is a 'matchmaking' service implemented using a digital platform that matches independent drivers with 

passengers. The process of ride-sharing commences when a passenger uses a ride-sharing mobile app to request a ride by 

sending a signal to a platform (for example, Uber) containing information about the trip's location and origin. Based on 
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demand (number of ride requests) and supply (number of drivers) around the passenger's location, the platform's mobile app 

calculates an instant fare and sends it to the passenger. The passenger has the option of accepting or rejecting the proposed 

fare at the next step. After the proposed trip and fare are accepted, the nearest driver is identified and calculated 

algorithmically and transmitted. A driver can accept or decline the proposal for a trip fare. Upon accepting the offer, he/she 

will receive instructions on how to pick up the passenger. Once the passenger has arrived at the destination, the transaction 

ends, Cassey (2017). 

Furthermore, a ride-sharing service allows multiple passengers to travel along similar routes (completely or partially 

overlapped), Psaraftis (1980), which can be static or dynamic. Static ride sharing involves knowing the ride requests, the 

source and destination location, and the available vehicles in advance, Atahran et al. (2014). A non-heuristic algorithm or a 

heuristic algorithm (approximation) can be used to process the requests after the system has all the necessary information. In 

contrast, dynamic ride-sharing systems do not receive such information and match passengers with drivers as requests arrive 

(in real-time), Archetti et al. (2016). 

According to Cassey (2017), the ride-sharing competition involves four aspects: price dynamics, strategic pricing, fixed 

pricing vs. surge pricing, and information sharing. Pricing strategies can take the form of setting lower prices to take advantage 

of network effects. It is common to see this strategy in ride-sharing when two or more platforms are in intense competition. 

Surge pricing involves taking into account current demand and supply conditions at a particular location. Fixed pricing entails 

a fixed price that does not fluctuate over time as demand and supply conditions change. When information is shared between 

rival platforms, prices are set based on the collective demand and supply at the location, and the two platforms may still have 

different market shares based on their different locational distributions. 

In this paper, we explore a dynamic pricing system for ride-share platforms, leveraging the optimal control approach to 

address the inherent complexities of this problem. Optimal control theory, with its extensive track record of successful 

applications in management science and economics (Sethi, 2019; Al-Matar and Tadj, 2023; Ghorai, 2022), serves as the 

foundation for our analysis. The primary objective of this research is to develop a robust framework for determining the 

optimal rate of change in ride prices, aiming to maximize profitability while maintaining system stability and customer 

satisfaction.  

The originality of our research lies in its application of a nonlinear profit function over a specified prediction horizon, 

where the control variable is dynamically adjusted to reflect real-time changes in the ride-share market. Unlike traditional 

static pricing models, our approach incorporates both the number of ride requests and the hourly ride price rate as state 

variables, capturing the fluctuating demand and pricing behavior in a highly competitive environment. 

To achieve these objectives, we model the system dynamics using relevant initial value problems, ensuring that our 

approach can adapt to various market conditions. The model predictive control (MPC) methodology is employed to iteratively 

calculate the optimal rate of change in the ride price, ensuring responsiveness to market shifts. The results are validated 

through a series of illustrative examples, demonstrating the effectiveness and practical relevance of our approach. 

Furthermore, we conduct sensitivity analyses to provide deeper insights into the factors influencing the system's 

performance. These analyses offer valuable managerial implications, guiding decision-makers in optimizing pricing strategies 

under different scenarios. This research not only advances the application of optimal control in dynamic pricing but also 

contributes to the broader understanding of real-time pricing strategies in the ride-share industry. 

 

2. LITERATURE REVIEW 

 

Different models, data analysis and simulation have been used in several studies to explore ride-sharing's potential. For 

instance, Tsao et al. (2019) developed a model predictive control (MPC) approach to optimize routes for ride-sharing 

automobility-on-demand (RAMoD) systems. As a result of this approach, self-driving cars can provide coordinated on-

demand mobility to improve social welfare. According to a real-world case study, RAMoD can significantly improve social 

welfare over a single-occupancy Autonomous Mobility-on-Demand (AMoD) system. There are, however, several factors that 

influence the performance of the MPC algorithm and RAMoD system, including the size and density of the city, the traffic 

patterns, and user behavior, as well as the amount of capital required to implement such a system. 

The work by Yuan and Hentenryck (2021a) introduces a machine-learning model that predicts the optimal solutions for 

MPCs using an optimization proxy. This study discusses dynamic pricing and vehicle relocation in ride-hailing systems. The 

system is designed to maximize the number of riders served while minimizing its operational costs. While this model assumes 

that the demand forecast is accurate, this is not always the case in practice. Thus, it may not be able to generalize well to 

different cities or regions with different traffic patterns and demand characteristics. 

Also, Yuan and Hentenryck (2021b) propose a spatiotemporal pricing framework called AP-RTRS, which controls the 

waiting time and completion rate of ride-sharing requests. Through the use of Model Predictive Control (MPC), the 

framework optimizes demand and supply imbalances, pricing, average wait times, and service quality based on geographical 

location. According to simulation experiments, the pricing optimization model minimizes waiting times while maintaining 
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revenue and geographical equity. While the framework is effective, various factors may affect its effectiveness, including the 

accuracy of demand forecasting, rider willingness to pay higher prices during peak hours, and the availability of drivers. 

Moreover, the framework may not apply to all ride-hailing/ride-sharing systems in general, as different systems may have 

different characteristics and constraints. 

As well, Yuan and Hentenryck (2021c) propose a hybrid approach that combines a machine-learning model with a high-

fidelity optimization to improve ride-sharing system performance. The proposed approach achieves a 27% reduction in 

average waiting time compared to the original relocation model due to its higher fidelity. The results suggest that this hybrid 

approach may provide an appealing avenue for certain. In addition, the predicted solutions may not always be feasible due to 

physical constraints that must be met due to the high-dimensional decision space and sparse decision space and the difficulty 

of capturing patterns with large amounts of data. 

In Chen and Cassandras (2020), authors propose a dynamic vehicle assignment strategy that reduces passengers' waiting 

times and travel times in a real-time ride-sharing system. In order to overcome the "curse of dimensionality" in RSS 

optimization formulations, authors adopted an event-driven Receding Horizon Control (RHC) approach that reacts to real-

time random events. Both waiting times and travel times are optimized by modeling the RSS as a discrete event system. 

Despite the paper's focus on reducing the complexity of the vehicle assignment problem, it does not address how profit can 

be optimized by changing the ride price rate at an optimal rate. 

An interactive bathtub model is proposed by Sadeghi and Smith (2019) for explaining the traffic dynamics of ride-

sourcing vehicles in undifferentiated streets that are exclusively serviced by ride-sourcing services. Using this model, only 

basic inputs are required. To model ride-sourcing vehicle movements accurately, it considers three states: idling, picking up 

and collecting, and delivering. It also takes into account travel time, waiting time, and service time. The interactive bathtub 

model provides a framework for developing effective traffic management strategies for cities served by ride-sourcing 

vehicles, but it has not been used to minimize waiting and travel times for travelers. 

To minimize the wait time of customers, two indirect control methods are introduced by Fan (2020) to optimize the 

location of drivers waiting. However, both the sharing information control method and the pay-to-control method are only 

found to have near-optimal controls with the algorithm proposed. In order to further optimize customer waiting time, dynamic 

pricing and routing incentives have not yet been investigated. 

Two indirect control methods are also proposed by Yengejeh and Smith (2021); information on the location of other 

waiting drivers is shared with a subgroup of drivers, and drivers are paid to relocate. Using approximation and LP-rounding 

algorithms, the model is further modified to optimize waiting time; these algorithms manipulate drivers' decisions to relocate 

to a desired waiting location, thereby minimizing maximum customer and driver wait times. As the proposed model is 

combinatorial in nature, it is still unable to handle scalability issues, including the number of customers and drivers in the 

system. A real-life scenario where the number of available drivers and the number of ride requests changes over time is also 

overlooked in the model, which could further optimize a driver's profit (by applying dynamic pricing). 

In Luo and Saigal (2017), authors propose a dynamic pricing approach to on-demand ride-sharing that addresses 

dimensionality and improves efficiency in pricing decisions by using continuous-time, continuous-space methods. This 

approach is shown to provide efficient pricing decisions, which can lead to increased revenue for ride-sharing platforms. In 

large-scale systems, however, such a method may be difficult to implement due to the computation effort required. 

Beojone et al. (2024) introduce a multi-layer control strategy for efficiently repositioning empty ride-hailing vehicles, 

aiming to bridge the gap between proactive repositioning strategies and micro-management. They demonstrate their 

framework's effectiveness and efficiency in reducing average passenger waiting times and abandonment rates through 

experimental validation using an agent-based simulator on a real network. 

As ride-sharing becomes an increasingly popular mobility option, Shen et al. (2023) focus on the modeling and control 

of large-scale multimodal systems in an automated and shared environment. The authors develop a macroscopic fundamental 

diagram–based traffic flow model to capture the demand-supply relationship and traffic dynamics at an aggregated network 

level, considering private cars, taxis, and both single- and multioccupancy ride-sharing vehicles. The model incorporates 

multimodal meeting functions for passenger-vehicle matching, enabling the formulation of optimization strategies for region-

level dispatching and vehicle relocation. Experimental results demonstrate that the proposed model effectively reproduces 

traffic dynamics and multimodal interactions under various conditions, while the control-based dispatching strategies enhance 

the efficiency of all modes, reduce travel costs for riders, and improve service levels for passengers. 

Most literature addresses the optimization problem of matching passengers with drivers in static settings. Mejjaouli and 

Tadj (2023) introduce a dynamic approach, using differential equations to model the system's evolution with the aim of 

maximizing profit over the planning horizon. They apply optimal control theory to determine the ideal rate of change in ride 

pricing. 

This brief literature review shows that even though pricing in ride-sharing has been considered from different 

perspectives, many questions remain unanswered, and there is still room for research to fill gaps, such as the lack of models 

covering the ride-sharing problem, including state and control variables and the scarcity of continuous-time analysis. Also, 
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while considerable attention has been given to traffic dynamics and minimizing customer waiting and service times, there is 

a notable lack of focus on profit optimization for ride-sharing platform operators. This critical aspect remains underexplored 

in the literature, presenting an opportunity for future research to address the financial sustainability and efficiency of ride-

sharing platforms. 

 

3. MODEL PREDICTIVE CONTROL APPROACH 
 

In this work, the problem of obtaining the optimal ride price over a time horizon for ride-share platforms is addressed. Ride-

share platforms generate income through connecting drivers with ride requesters that pay a ride fare. The ride fare is then 

divided between the platform and the ride provider according to pre-agreed terms. In the developed model, a decision-making 

horizon where the number of ride providers and the number of ride requests change over time. A growth rate 𝜇 of the number 

of ride requests is considered.  This reflects the increase in customer base and adopters of the platform over time. Also, the 

utility factor for passengers, which is the difference between the reference price and the shown price, is considered when 

building the model. Actually, the reference price is the price that the customer finds acceptable for a certain product or service 

within a specific market. In terms of cost, there is a cost associated with serving each customer, denoted as 𝜖 in our model. 

This cost covers the cost of developing and maintaining the app, marketing, hiring drivers and training them, … etc. Another 

cost to be considered pertains to changing the ride price. This cost is captured by 𝛽 in the developed model and will be 

considered as quadratic, as the marginal impact of changing the ride price usually increases as the amount of change price 

increases (Kumar and Sethi, 2009). 

Model Predictive Control is a powerful tool for managing dynamic systems where conditions are constantly changing. 

By predicting future outcomes and optimizing control actions accordingly, MPC can significantly improve the efficiency and 

effectiveness of systems like dynamic pricing in ride-share platforms. MPC uses a mathematical model of the system to 

predict its future behavior over a finite prediction horizon. This model describes how the state of the system evolves over 

time in response to changes in control inputs (like ride pricing in a ride-share platform). At each control step, MPC solves an 

optimization problem. The goal is to determine the sequence of future control actions (e.g., rate changes in ride prices) that 

optimize a given objective function, such as maximizing profit or minimizing cost, over the prediction horizon. The objective 

function typically balances different factors like revenue, customer demand, and operational constraints. 

To describe the model, Table 1 summarizes the parameters and variables of the model. 
 

Table 1. Parameters and Variables 
 

𝐻: 

𝑇: 

𝑥(𝑡):  

𝑝(𝑡): 

𝑢(𝑡): 

𝜙: 

𝜇: 

𝜋: 

𝜀: 

𝛽: 

Length of planning horizon 

Length of prediction horizon 

Number of ride requests at time 𝑡 after checking the price (state variable) 

Ride price rate (per hour) at time 𝑡 (state variable) 

Rate of change in the ride price rate (control variable) 

Sensitivity of riders to the ride price rate 

Market growth rate for ride sequesters 

Utility factor for passengers for difference between the reference price and shown 

price 

Cost of serving riders 

Cost of changing the price rate 

 

Let [0, 𝐻] represent the planning horizon, and for any 𝑡0 > 0, 𝑇 > 0 with 𝑇  much smaller than 𝐻 , let [𝑡0, 𝑡0 + 𝑇] 
represent the prediction horizon. The state of the system at time 𝑡 is denoted by 𝑥(𝑡), the number of ride requests after 

checking the price, and 𝑝(𝑡), the hourly ride price rate. The control variable is 𝑢(𝑡), the rate of change in the ride price rate. 

To describe the evolution of the system, let 𝜇 be the market growth rate for ride sequesters, 𝜙 be the sensitivity of riders to 

the ride price rate, 𝜋 be the utility factor for passengers for the difference between the reference price and shown price, and 

𝑅 be the reference price. Since the number of ride requests subscribers decreases (resp., increases) with an increase (resp., 

decrease) in the ride price rate, the dynamics of the system are described by the differential equations: 

 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝜇 − 𝜙𝑢(𝑡) + 𝜋 [𝑅 − 𝑝(𝑡)], 𝑥(0) = 𝑥0, (3.1) 

 
𝑑𝑝(𝑡)

𝑑𝑡
= 𝑢(𝑡), 𝑝(0) = 𝑝0, (3.2) 
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where 𝑥0 and 𝑝0 are known constants. 

To determine the optimal control and state variables, let 𝜀 be the cost of serving riders and let 𝛽 be the cost of changing 

the price rate. The revenue 𝑝(𝑡)𝑥(𝑡) and the nonlinear cost 𝜀𝑥(𝑡) − 𝛽𝑢(𝑡)2 are used to determine the total profit to maximize 

during the prediction interval: 

 

max 𝐽(𝑡0, 𝑢) = ∫ [𝑝(𝑡)𝑥(𝑡) − 𝜀𝑥(𝑡) − 𝛽𝑢(𝑡)2]𝑑𝑡.

𝑡0+𝑇

𝑡0

 (3.3) 

 

Thus, the problem is to determine the optimal rate of change in the price that maximizes the objective function (3.3) 

subject to the state equations (3.1)-(3.2). The integral in (3.3) is calculated by dividing the prediction interval [𝑡0, 𝑡0 + 𝑇] into 

𝑚 intervals of equal length ℎ = 𝑇/𝑚 and employing the trapezoid formula. Using matrix notation, the above objective 

function becomes: 

 

𝐽(𝑡0, 𝑢) = 𝑀(𝑡0) + 𝐺(𝑡0)
⊤ 𝑈(𝑡0) − 𝑈(𝑡0)

⊤𝑄𝑈(𝑡0),  

 

where 

 

𝑀(𝑡) =
ℎ

2
 {
− ℎ𝜋(2𝛼 + 𝑚)𝑝(𝑡)2 + ℎ(2𝛼 + 𝑚)(𝜇 + 𝜋𝑅 + 𝜀𝜋)𝑝(𝑡) +

2𝑚𝑝(𝑡)𝑥(𝑡) − 2𝑚𝜀𝑥(𝑡) − ℎ𝜀(2𝛼 + 𝑚)(𝜇 + 𝜋𝑅)
} 

 

is independent of the control variable, 

 

𝑈(𝑡) = [

𝑢(𝑡)

𝑢(𝑡 + ℎ)
⋮

𝑢(𝑡 + (𝑚 − 1)ℎ

] ,   𝐺(𝑡) = [

𝑔(𝑡)
0
⋮
0

] , 𝑄 = [

𝑞 0 ⋯ 0
0 ℎ𝛽 ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 0 ℎ𝛽

], 

with 

𝑞 =
ℎ

2
(𝛽 + 2ℎ2𝛾𝜙 + 𝑚2ℎ2𝜙),

𝑔(𝑡) = 𝜉_0 + 𝜉1𝑥(𝑡) + 𝜉2𝑝(𝑡),
 

and 

𝜉0 = ℎ3𝛾𝜇 + ℎ3𝛾𝜋𝑅 + ℎ2𝜀𝜙 𝛼 −
𝑚2ℎ3𝜇

2
−

𝑚2ℎ3𝜋𝑅

2
−

𝑚ℎ2𝜀𝜙

2
,

𝜉1 = ℎ2𝛼 −
𝑚ℎ2

2
,

𝜉2 = −ℎ3𝛾𝜋 − ℎ2𝜙𝛼 −
𝑚ℎ2𝜙

2
− 𝑚ℎ𝜋.

 

 

Note that the matrix 𝑄 is positive definite. Therefore, the global minimum of 𝐽 is reached at 𝑈(𝑡0) given by: 

 

𝑈(𝑡) =
1

2
𝑄−1𝐺(𝑡). 

 

In receding horizon, we obtain 𝑢(𝑡) as 𝑢(𝑡) = [1, 0, 0,⋯ , 0]𝑈(𝑡), which yields: 

 

𝑢(𝑡) =
𝜉0 + 𝜉1𝑥(𝑡) + 𝜉2𝑝(𝑡)

2𝑞
. (3.4) 

 

Since the control variable 𝑢(𝑡) is found in terms of the state variables 𝑥(𝑡) and 𝑝(𝑡), we substitute its expression in the 

state equations, which yields: 
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𝑑𝑥(𝑡)

𝑑𝑡
= (𝜇 + 𝜋𝑅 −

𝜙𝜉0

2𝑞
) −

𝜙𝜉1

2𝑞
𝑥(𝑡) − (

𝜙𝜉2

2𝑞
+ 𝜋) 𝑝(𝑡),

𝑑𝑝(𝑡)

𝑑𝑡
=

𝜉0

2𝑞
+

𝜉1

2𝑞
𝑥(𝑡) +

𝜉2

2𝑞
𝑝(𝑡).

 

 

Using matrix notation, let 𝑦(𝑡) = [𝑥(𝑡) 𝑝(𝑡)]⊤, 𝑦0 = [𝑥0 𝑝0]⊤, 

 

𝐴 = [
𝑎00 𝑎01

𝑎10 𝑎11
] =

[
 
 
 
 −

𝜙𝜉1

2𝑞
−(

𝜙𝜉2

2𝑞
+ 𝜋)

𝜉1

2𝑞

𝜉2

2𝑞 ]
 
 
 
 

, 𝑏 = [
𝑏1

𝑏2
] =

[
 
 
 
 𝜇 + 𝜋𝑅 −

𝜙𝜉0

2𝑞
𝜉0

2𝑞 ]
 
 
 
 

. 

 

Then, the above differential system can be written as: 

 
𝑑

𝑑𝑡
𝑦(𝑡) = 𝐴𝑦(𝑡) + 𝑏, 𝑦(0)  =  𝑦0. 

 

The matrix 𝐴 has two eigenvalues given by: 

 

𝑚1 =
𝑎00 + 𝑎11 − √𝑎00

2 − 2𝑎00𝑎11 + 𝑎11
2 + 4𝑎01𝑎10

2
,

𝑚2 =
𝑎00 + 𝑎11 + √𝑎00

2 − 2𝑎00𝑎11 + 𝑎11
2 + 4𝑎01𝑎10

2
.

 

 

The corresponding eigenvectors are: 

 

𝑉1 = [
𝑣1

1
] , 𝑉2 = [

𝑣2

1
], 

 

where 

 

𝑣1 =
𝑎00 − 𝑎11 − √𝑎00

2 − 2𝑎00𝑑 + 𝑎11
2 + 4𝑎01𝑎10

2
,

𝑣2 =
𝑎00 − 𝑎11 + √𝑎00

2 − 2𝑎00𝑑 + 𝑎11
2 + 4𝑎01𝑎10

2
.

 

 

Using standard methods, we readily get the optimal solutions of the differential system, which are the optimal state 

variables: 

 

𝑥(𝑡) =
𝑣1

𝑣1 − 𝑣2
[(𝑥0 − 𝑝0𝑣2 +

𝑏1 − 𝑏2𝑣2

𝑚1

) 𝑒−𝑚1(𝑡0−𝑡) −
𝑏1 − 𝑏2𝑣2

𝑚1
]

+
𝑣2

𝑣1 − 𝑣2
[(−𝑥0 + 𝑝0𝑣1 −

𝑏1 − 𝑏2𝑣1

𝑚2

) 𝑒−𝑚2(𝑡0−𝑡) −
𝑏1 − 𝑏2𝑣1

𝑚2
]

 (3.5) 

 

𝑝(𝑡) =
1

𝑣1 − 𝑣2
[(𝑥0 − 𝑝0𝑣2 +

𝑏1 − 𝑏2𝑣2

𝑚1

) 𝑒−𝑚1(𝑡0−𝑡) −
𝑏1 − 𝑏2𝑣2

𝑚1
]

+
1

𝑣1 − 𝑣2
[(−𝑥0 + 𝑝0𝑣1 −

𝑏1 − 𝑏2𝑣1

𝑚2

) 𝑒−𝑚2(𝑡0−𝑡) −
𝑏1 − 𝑏2𝑣1

𝑚2
]

 (3.6) 

 

Substituting (3.5)-(3.6) into (3.4) yields the optimal control variable: 
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𝑢(𝑡) =
𝜉0

2𝑞
+

𝜉1

2𝑞
{

𝑣1

𝑣1 − 𝑣2
[(𝑥0 − 𝑝0𝑣2 +

𝑏1 − 𝑏2𝑣2

𝑚1

) 𝑒−𝑚1(𝑡0−𝑡) −
𝑏1 − 𝑏2𝑣2

𝑚1
]

+
𝑣2

𝑣1 − 𝑣2
[(−𝑥0 + 𝑝0𝑣1 −

𝑏1 − 𝑏2𝑣1

𝑚2

) 𝑒−𝑚2(𝑡0−𝑡) −
𝑏1 − 𝑏2𝑣1

𝑚2
]}

+
𝜉2

2𝑞
{

1

𝑣1 − 𝑣2
[(𝑥0 − 𝑝0𝑣2 +

𝑏1 − 𝑏2𝑣2

𝑚1

) 𝑒−𝑚1(𝑡0−𝑡) −
𝑏1 − 𝑏2𝑣2

𝑚1
]

+
1

𝑣1 − 𝑣2
[(−𝑥0 + 𝑝0𝑣1 −

𝑏1 − 𝑏2𝑣1

𝑚2

) 𝑒−𝑚2(𝑡0−𝑡) −
𝑏1 − 𝑏2𝑣1

𝑚2
]}

 (3.7) 

 

Finally, the optimal objective function value is found as: 

 

𝐽∗ = 𝑀(𝑡) +
1

4𝑞
𝑔(𝑡). (3.8) 

 

4. NUMERICAL EXAMPLE AND MANAGERIAL IMPLICATIONS 

 

Consider a ride-share platform that should optimize the price rate of change for optimum ride requests and ride price. In this 

numerical example, the base parameter values are as follows: 𝑇 = 20, 𝜀 = 0.01, 𝜇 = 10, 𝛽 = 0.3, 𝜋 = 3.9, 𝜙 = 5, 𝑅 = 1, 

ℎ = 0.1, 𝑥0 = 2, and 𝑝0 = 1. The previous results found in Section 3 are implemented in Matlab, and the optimal ride 

requests 𝑥(𝑡), ride price 𝑝(𝑡), and price rate of change 𝑢(𝑡) are depicted in Figure 1. The maximum total profit is also 

calculated, and it is equal to 𝐽∗ = 609.44. 

 

  
(a) (b) 

 

Figure 1. (a) Optimal State Variables; (b) Control Variable (right) 

 

In this part, the effect of the different model parameters on the state (number of ride requests and ride price), control 

variables (price rate of change) as well as the objective function value will be discussed. In each numerical experiment, we 

vary one parameter, and the rest of the parameters is set at their base values. Managerial implications for each numerical 

experiment are also be added to equip the decision maker (the platform operator) with the necessary tools to control state 

variables and achieve maximum profit.  

 

4.1. Effect of 𝝓, sensitivity of riders to the ride price rate:  

 

Figure 2 presents the effect of the sensitivity of riders to the ride price rate 𝜙 on the optimal rider requests and ride price. 

According to Figure 2(a), the number of ride requests increases as the sensitivity to the ride price rate increases for 𝜙 =
[5, 20, 50]. This is due to the decrease in the ride price, which is considered comparatively high, as depicted in Figure 2(b). 
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(a) (b) 

 

Figure 2. Effect of 𝜙 on the State Variables 

 

 
 

Figure 3. Effect of 𝜙 on the Control Variable 

 

In fact, when customers are more sensitive to the ride price, the decision maker (the ride-sharing provider) should reduce 

the ride price to attract more customers. Actually, decreasing ride prices has a positive impact on the objective function that 

increases from 609 to 1238 for 𝜙 = 5  and 𝜙 = 20 , respectively (Table 2). However, when sensitivity gets very high 

(i. e. , 𝜙 = 50), the ride-sharing provider strategy should be offering aggressive price discounts in order to keep almost the 

same profit levels. Following this strategy, the decrease income per rider will be compensated by the increase of ride 

requesters. This strategy will help the decision-maker secure a higher market share at the expense of income per rider. For 

example, the profit is equal to 1238 and 1307 for 𝜙 = 20 and 𝜙 = 50, respectively. 

 

Table 2. Variations of 𝐽∗ with 𝜙 
 

𝜙 5 20 30 

Objective function value 609 1238 1307 

 

4.2. Effect of 𝝁, market growth rate for ride requesters:  

 

The impact of the market growth rate 𝜇 on the optimal ride requests and the optimal price rate trajectories is investigated 

and is depicted in Figure 4. 
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(a) (b) 

 

Figure 4. Effect of 𝜇 on the State Variables 

 

 
 

Figure 5. Effect of 𝜇 on the Control Variable 

 

Clearly, the market growth rate has a positive effect on the number of ride requests. When the ride requests increase, 

the ride-share provider will gain leverage and capitalize on the growth of the customer base by increasing prices and 

generating more profit. In fact, market growth has always had a positive impact on the ride-share provider and its competitors 

alike, even though the market share is the same. For instance, the profit increased from 609 to 1908 for 𝜇 = 10 and 𝜇 = 20, 

respectively. 

 

Table 3. Variations of 𝐽∗ with 𝜇 
 

𝜇 10 20 50 

Objective function value 609 1908 10125 

 

4.3. Effect of 𝝅, utility factor for passengers for difference between the reference price and shown price:  

 

The effect of the utility factor 𝜋 on the objective function, the price rate and the number of ride requests depends largely on 

the reference price 𝑅. When 𝑅 is set at a low level 𝑅 = 1, it can be seen from Figure 6 (right) that the ride-sharing platform 

cannot highly raise the ride price rate. From a management point of view, this scenario happens in a very competitive market 
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where many ride-sharing providers are competing for demand and focused on attracting a bigger customer base by reducing 

prices to get a higher market share and try to drive out competitors from the market.  

 

  
(a) (b) 

 

Figure 6. Effect of 𝜋 on the State Variables for Low 𝑅 

 

 
 

Figure 7. Effect of 𝜋 on the Control Variable for Low 𝑅 

 

This will result in the ride-sharing platform not being able to charge enough for their customers, which negatively affects 

the profit (Table 4). 

 

Table 4. Variations of 𝐽∗ with 𝜋 when 𝑅 = 1 
 

𝜋 3.9 10 20 

Objective function value 609 178 89 

 

However, when 𝑅 gets higher 𝑅 = 5, the ride-sharing platform can set prices at higher levels, as depicted in Figure 8 

(right). Also, when 𝑅 is set at high levels 𝑅 = 5, the ride-sharing platform can attract more customers by setting its price 

lower than the reference price, as shown by the trajectories of the price rate and ride requests depicted in Figure 8. From a 

management perspective, this scenario happens in markets where transportation is expensive for reasons such as markets with 

high purchasing power or markets with poor public transportation infrastructure.  
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(a) (b) 

 

Figure 8. Effect of 𝜋 on the State Variables for High 𝑅 

 

 
 

Figure 9. Effect of 𝜋 on the Control Variable for High 𝑅 

 

Therefore, this results in higher profit levels, as shown in Table 5. 

 

Table 5. Variations of 𝐽∗ with 𝜋 when 𝑅 = 5 
 

𝜋 3.9 10 20 

Objective function value 2950 1948 1651 

 

4.4 Effect of 𝜺, cost of serving riders:  

 

In real life, the cost of serving customers can be attributed to market regulations, the strength of unions and their negotiation 

power, the cost of developing and maintaining the platform, income taxes, …etc. As the cost of serving riders increases, the 

profit decreases, as shown in Table 6. 

 

Table 6. Variations of 𝐽∗ with 𝜀 
 

𝜀 0.01 0.5 1 

Objective function value 609 467 322 
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This is due to the fact that an increase in the cost of serving riders will push the ride-sharing provider to increase prices 

in order to maintain its profit margin (Figure 11 (right)) and pass this cost increase to the customers. However, when the cost 

of serving is high (i.e., 𝜀 = 1), this may lead to the ride-sharing provider losing their customer base (Figure 10 (left)), which 

is reflected negatively on the profit, as can been seen from the profit level that drops from 609 to 322 for 𝜀 = 0.01 and 𝜀 = 1, 

respectively. 

 

  
(a) (b) 

 

Figure 10. Effect of 𝜀 on the State Variables 

 

 
 

Figure 11. Effect of 𝜀 on the Control Variable 

 

4.5. Effect of 𝜷, cost of changing the price rate:  

 

In Figure 12, the effect of the cost of changing the price rate on the optimal price rate and number of ride requests is 

investigated. 
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(a) (b) 

 

Figure 12. Effect of 𝛽 on the State Variables 

 

 
 

Figure 13. Effect of 𝛽 on the Control Variable 

 

It can be seen that the trajectories (of both price and ride requests) for the different values of 𝛽 are almost identical and 

don’t show any major differences when 𝛽 changes from 3 to 20. This is also reflected on the objective function that slightly 

decreases as 𝛽 increases, as depicted in Table 7. In fact, this decrease in the objective function happens because of the cost 

of changing the price rate, which in real-life scenarios might happen because of marketing expenses to develop the brand 

name or by improving the ride experience quality.  

 

Table 7. Variations of 𝐽∗ with 𝛽 
 

𝛽 3 10 20 

Objective function value 609 596 582 

 

5. CONCLUSION 

 

Significant technological advances in the last few years have changed the ways businesses are conducted. Oftentimes, 

information is needed on the spot in order to make the best possible decision. We have considered in this paper a model for 

dynamic pricing in ride-share platforms. Using the model predictive control approach, the optimal rate of change in the ride 
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price is derived in closed form. Managerial insights are obtained that provide useful information about the system parameters 

and how they affect the model solution. 

The managerial implications results show that the number of ride requests is negatively affected by the ride price rate, 

which pushes platform operators to lower their prices to attract a bigger customer base and market share. On the other side, 

if the number of ride requests increases because of a higher utility factor or market growth, decision-makers can capitalize 

on that to increase ride rates. For example, when the utility factor changes from 3.9 to 10, the objective function decreases 

from 609 to 178 because the platform can charge its customers enough to drive their profits up. Moreover, when the market 

growth rate increases from 10 to 20, the objective function increases from 609 to 1908.   

Also, the discussed results reveal that the cost of serving each ride (because of market regulations, strength of unions 

and their negotiation power, income taxes, …etc.) and the cost of changing price rates (marketing expenses, brand building, 

ride quality improvement, …etc.) is found to have a negative effect on the ride price and the number of subscribers. For 

instance, the objective function decreased from 609 to 467 when the cost of serving riders changed from 0.01 to 0.5. 

As an expansion to this work, it is recommended to include more platform dynamics like the number of riders and 

service providers joining the platform and raising prices during certain times (i.e., rush hours). Also, this research can be 

extended to consider a situation where two platforms, e.g., Uber vs. Lyft, compete for customers. Such a model could be 

tackled from a game theory viewpoint and involve different techniques and tools other than optimal control.  
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