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The rise of e-commerce and the just-in-time system has imposed more stringent demands on fresh product supply chains. 

This paper addresses the challenges of production and distribution decision-making under uncertainty, considering the vehicle 

routing problem with time windows (VRPTW). Fresh products are distributed immediately after production, with any 

remaining perishable products deteriorating before they can be transported. To address these issues, a mathematical model is 

proposed for optimizing the production and distribution of fresh products. The objective optimization model for production 

scheduling and VRPTW is classified as an NP-hard problem. To tackle and optimize this complex problem, a two-stage 

algorithm combining ant colony optimization (ACO) and a fuzzy adaptive genetic algorithm (FAGA) is proposed. The 

approach begins by determining the critical combination parameters of the algorithm. Subsequently, analysis of the model's 

results reveals that production and distribution costs decrease significantly when integrated decision-making is employed. 

Additionally, the vehicle setup cost introduces a turning point in the overall target cost. Finally, a numerical experiment on 

VRPTW is conducted, with the results demonstrating the effectiveness of the proposed two-stage algorithm. 

 

Keywords: Vehicle Routing Problem; Production Scheduling; Fresh Products; Ant Colony Optimization; Genetic Algorithm.  

 

(Received on May 15, 2024; Accepted on October 22, 2024) 

 

 

1. INTRODUCTION 
 

In the field of supply chain management (SCM), the complexity and critical importance of production distribution processes 

have garnered increasing attention, particularly in relation to ensuring product quality and timely delivery. A comprehensive 

approach to production-distribution planning (PDP) is crucial, especially within a multi-echelon network involving suppliers, 

producers, distributors, and customers, to maintain the integrity of perishable products. A significant challenge faced by food 

distributors lies in preserving the nutritional properties of fresh food during transportation. Due to the perishable nature of 

these products, they require specialized handling that differs from the management of non-perishable items, making the 

optimization of PDP essential for the sustainable development of the perishable products supply chain. Urbanization has 

exacerbated these challenges, leading to road congestion resulting in delays in delivery. Such delays, coupled with the 

stringent time window constraints imposed by customers, have increased operational costs for logistics companies. In 

response, logistics enterprises are increasingly focusing on enhancing the efficiency of their distribution operations. One 

potential strategy is the establishment of multiple warehouses to better meet customer demands, which can reduce operational 

costs, decrease overall transportation time, and improve the flexibility of the PDP process (Wen et al., 2015). 

For perishable products, maintaining freshness is paramount, making the issue of time windows central to research on 

fresh product logistics. The vehicle routing problem with time windows (VRPTW) specifically addresses the need for delivery 

vehicles to adhere to customer-specified time windows, with penalties or rejections resulting from any failure to meet these 

windows. Given the rapid degradation in value and quality of fresh products after production, timely production and 

distribution are critical, directly influencing suppliers' costs. While previous research has extensively explored various aspects 

of supply chain management, a significant gap remains in addressing the specific challenges of managing perishable products 

under conditions of urban congestion and strict delivery time windows. Addressing these challenges is vital for reducing food 

waste, optimizing logistics costs, and enhancing customer satisfaction. 

This paper presents a two-stage optimization model that integrates ant colony optimization (ACO) with a fuzzy adaptive 

genetic algorithm (FAGA) designed specifically to tackle the challenges of production distribution planning for perishable 

products. Unlike the existing model, this research not only considers decay rates and time window constraints but also 

optimizes the supplier's total expected cost by determining optimal starting times, production quantities, and vehicle 

distribution routes. Comparative analysis with traditional methods demonstrates the superior efficiency and effectiveness of 
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our approach. This paper makes the following key contributions: (1) Based on the characteristics of fresh products, which are 

distributed immediately after production and deteriorate before transportation, this study proposes a model aimed at 

minimizing the supplier's total expected cost. The model simultaneously determines the optimal starting time, production 

quantities, and vehicle distribution routes. (2) For the cost-minimization optimization model, a two-stage algorithm 

comprising ACO and FAGA is proposed for production distribution planning, considering decay rates and time window 

constraints. These meta-heuristic algorithms are designed to address routing problems in PDP. Experimental results 

demonstrate that the proposed methods are both feasible and effective. 

The proposed optimization model integrates ACO and FAGA to address the identified gaps. Unlike previous research, 

which often treats production and distribution as distinct processes, this model unifies them within a single optimization 

framework. This integration enables more accurate and effective decision-making within the supply chain of fresh products. 

The model incorporates decay rates and time window constraints, both of which are critical in the logistics of fresh products. 

By addressing these factors, the model offers a more realistic and practical solution to the challenges posed by perishability 

and uncertainty. The hybrid application of ACO and FAGA represents a significant methodological advancement. ACO is 

utilized for the production scheduling stage, while FAGA is applied to vehicle routing. This combination enhances the 

robustness and efficiency of the solution, yielding superior results compared to the use of either algorithm in isolation. 

The paper is structured as follows: Section 2 reviews the relevant literature. Section 3 introduces the objective function 

and associated constraints. Section 4 outlines the steps of the two-stage approach to the objective function, followed by 

experimental evaluations in Section 5. The conclusions are presented in Section 6. 

 

2. LITERATURE REVIEW 
 

The literature on VRP research concerning fresh products with time windows is extensive. Hsu et al. investigated the time-

window VRP for fresh agricultural product distribution. They constructed a VRPTW mathematical model that optimizes 

distribution costs, considering the randomness of fresh product distribution. An improved time-oriented nearest neighbor 

domain algorithm was developed to address the model's characteristics. Osvald and Stirn (2007) included the perishability of 

fresh products as part of the total distribution cost, establishing a model to minimize these costs, which they solved using a 

tabu search-based heuristic algorithm. Shukla and Jharkharia (2013) designed an artificial immune algorithm to solve cold 

chain logistics problems in fresh agricultural product distribution. Zhang and Chen (2014) considered the specific 

characteristics of different frozen foods and developed a mathematical model incorporating constraints related to loading 

capacity and unit volume. Shao et al. (2015) used a fuzzy membership function to represent the time window, focusing on 

minimizing total delivery cost and maximizing customer satisfaction. They established a multi-objective route optimization 

model for fresh delivery, solved with a genetic algorithm. Peng (2019) addressed the inefficiencies in cold chain logistics 

route design by minimizing an objective function and solving it using a basic genetic algorithm. 

Li Feng and Wei Ying (2010) studied time-dependent VRP (TDVRP) in the distribution of perishable products, using 

historical traffic data to construct a time-varying vehicle speed function with the goal of minimizing total distribution costs. 

A genetic algorithm was employed for problem-solving. Hu et al. (2017) developed a time-varying mixed VRPTW 

mathematical model that considered the time variability of energy consumption in refrigeration equipment, environmental 

temperature, and vehicle travel time. They implemented a two-stage hybrid algorithm that embedded variable neighborhood 

search and particle swarm optimization under an adaptive search mechanism. Liu and Fan (2017) sought to weaken the 

influence of dynamic traffic flow by establishing a customer satisfaction maximization model based on real-time traffic 

information and using an improved genetic algorithm for initial route planning and dynamic adjustment. 

Subsequent studies focused on production scheduling and VRPTW in fresh products. Ferrucci et al. (2016) modeled 

dynamic demand generation based on historical customer demand data and designed proactive real-time control methods to 

handle disruptions during distribution. Wang et al. (2018) established a distributed production scheduling model aimed at 

minimizing processing time and total energy consumption, proposing a knowledge-based collaborative algorithm (KCA). 

Zhou et al. (2019) developed an improved ant colony algorithm to solve the time-dependent green vehicle routing problem. 

Building on previous research, Kumar and Aouam (2019) presented models explaining capacity, lead times, and batch sizes 

using queuing theory. Ghadimi, Aouam, and Vanhoucke (2020) extended this model to consider the limited budget for 

allocating capacity in a non-cyclic supply chain. Bogue et al. (2020) proposed a column generation algorithm and post-

optimization heuristic based on variable neighborhood search. Shao et al. (2020) developed a distributed mixed-flow shop 

scheduling model that combined the characteristics of broadcast production with parallel machine scheduling. Zhou (2021) 

introduced an improved ant colony algorithm that considered multi-depot factors, optimizing vehicle travel time, reducing 

driving costs, saving energy, and reducing emissions. However, calculating vehicle travel time using the stage velocity-time 

function deviates from actual road traffic conditions, where vehicle speed changes are more continuous and smoother. Recent 

research has increasingly focused on hybrid algorithms for supply chain studies in broader areas (Rincon Garcia N. et al., 

2018; Tirkolaee, 2022). The comparison of this research and recent studies is shown in Table 1. 
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Table 1. Comparison on this research and recent studies  

 

Author(s) Research Methods Research Objectives Research Content Differentiation 

Wu D. & Wu C. 

(2022) 

VNS-NSGA-II 

algorithm 

Minimize economic cost 

and maximize customer 

satisfaction 

Studied time-

dependent split 

delivery for fresh 

agricultural products 

Focuses on time-dependent 

split delivery but not on 

uncertain demand. 

Pratap S., Jauhar S. 

K., et al. (2022) 

Stochastic optimization 

with FPA and CSA 

Optimize production 

inventory and routing 

with carbon footprint 

considerations 

Developed a model 

for perishable food 

logistics, including 

carbon emissions 

Considers carbon 

emissions but does not 

include uncertain demand. 

Mousavi R., Bashiri 

M., et al. (2022) 

Stochastic model with 

five-phase 

metaheuristic 

algorithm 

Minimize production 

inventory routing and 

waste costs 

Proposed a routing 

model for perishable 

products with 

uncertain demand 

Focuses on routing and 

waste but not on 

production scheduling 

optimization. 

Wangsa I. D., 

Vanany I., et al. 

(2023) 

Mixed-integer linear 

programming 

Optimize supply chain 

costs focusing on carbon 

emissions and food 

waste 

Optimized inventories 

and deliveries in 

fresh-food supply 

chains 

Primarily concerned with 

carbon emissions, not 

demand uncertainty. 

Hashemi-Amiri O., 

Ghorbani F. (2023) 

Bi-objective 

optimization using 

distributionally robust 

modeling 

Mitigate demand and 

supply uncertainties in 

the food supply chain 

Modeling for supplier 

selection, production 

scheduling, and 

routing 

Accounts for demand 

uncertainties, but study 

background was limited to 

COVID-19 

Zahran S. (2024) 

Optimization with 

enhanced ant colony 

algorithm 

Minimize delivery costs 

without sacrificing 

freshness 

Optimized vehicle 

travel times in fresh 

agri-products e-

commerce distribution 

Focuses on delivery times, 

not production scheduling 

or supplier optimization. 

Fernando W. M., 

Thibbotuwawa A., 

et al. (2024) 

Integrated bi-objective 

VRP model 

Optimize resource 

allocation, order 

scheduling, and route 

planning 

Proposed a VRP 

model for agricultural 

product distribution in 

retail chains 

Does not include 

optimization under 

uncertain demand 

conditions. 

The Present Paper 

Two-stage 

optimization model 

with ACO and FAGA 

Minimize the total cost 

of the supplier under 

uncertain demand 

Optimized production 

scheduling and VRP 

of fresh products 

Combines production 

scheduling and supplier 

selection under uncertain 

demand  

 

Previous studies have addressed the VRPTW for fresh products but often focused on isolated aspects such as distribution 

costs, perishability, or time window constraints rather than integrating these factors into a comprehensive model. Most 

literature does not account for the service time of retailers when generating the initial population, often relying solely on 

vehicle load and service time constraints at the distribution center. This omission can lead to computational complexity and 

inaccuracies. This paper addresses the stochastic nature of retailer demand and the significant impact of timely production 

and distribution on suppliers' costs. The model aligns more closely with current practices in fresh product production and 

distribution. The research introduces a fuzzy adaptive function that incorporates customer time requirements, improving the 

raw loss coefficient to reflect the time-sensitive value of fresh products. This approach leverages the exploratory strengths of 

ACO with the adaptive fine-tuning capabilities of FAGA, making it well-suited for tackling complex, real-world problems 

in production scheduling and VRPTW where demand is unpredictable. The proposed hybrid approach of ACO and FAGA 

quantifies the proximity of service times among retailers while simultaneously considering the effects of time and decay rate 

on distribution costs. 

 

3. MATHEMATICAL MODELLING 
 

In this study, retailer demand is bounded within a certain period and follows a normal distribution, indicating the inherent 

unpredictability of customer demand in both production scheduling and vehicle routing. This variability can substantially 

affect the efficiency of production schedules and delivery routes. In production scheduling, unforeseen fluctuations in demand 

may result in overproduction, stockouts, or the need for rescheduling. In the context of Vehicle Routing Problems with Time 
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Windows (VRPTW), fluctuating demand can alter the number of deliveries required or change the priority of specific 

deliveries, thereby complicating the routing process. Fresh products, which are assumed to decrease in value over time, 

present additional challenges. The production and distribution issues associated with time windows for fresh products are 

detailed as follows: fresh products must be distributed promptly after production within a complex distribution network. The 

supplier must determine the optimal production start time and the most efficient shipping route to ensure timely delivery to 

retailers. 

The objective for suppliers is to minimize their costs. Suppliers are limited to producing one product at a time. Stockouts 

result in an out-of-stock penalty, while overproduction incurs a spoilage penalty due to the inability to ship the products 

immediately. The distribution center operates with a limited number of vehicles, each with a maximum load capacity. A fuzzy 

time window represents the distribution time required by customers. Deviations from this time window, either earlier or later, 

result in corresponding penalty costs. The overall goal is to minimize production and distribution costs. A summary of the 

notations used in Section 3 is provided in Table 2. 

 

Table 2. Summary of notations in Section 3 

 

Symbol Description 

i index to retailers, 𝑖 = {1,2, ⋯ 𝑅} 

k index to vehicle, 𝑘 = {1,2, ⋯ 𝐾} 

𝑎𝑖  time of arrival at retailer 𝑖 
𝑐𝑚  production cost per unit of product 𝑚 

𝑐𝑖𝑗  distribution time in retailer node i and j 

𝑒𝑖  starting service time of retailer 𝑖 
𝑙𝑖  ending service time of retailer 𝑖 
𝐾  number of total vehicles 

𝑈   setup cost of a vehicle 

𝑄𝑣𝑒ℎ  total capacity of vehicles 

𝑅  number of total retailers 

𝑠𝑖  service time of retailer 𝑖 
𝑝  time value of travel time 

𝑔1  loss for ahead time windows 

𝑔2  loss due to time delay 

𝑡𝑚    production time of unit products 𝑚 

𝐷𝑖𝑚  average demand of retailer𝑖 to products𝑚 

�̂�𝑘,𝑚  producing end time of products 𝑚 for vehicle𝑘 

𝑡𝑘,𝑚  producing starting time of products 𝑚 for vehicle𝑘 

𝛿𝑚1  decay in value of products 𝑚 per unit of time 

𝛿𝑚2  goodwill loss for shortage of per unit products 𝑚 

𝑡𝑘,𝑠  Decision variables. time when the first product is produced for vehicle 𝑘 in a route S  

𝑄𝑖𝑚  Decision variables. quantity of production 𝑚 for retailer 𝑖 
𝑥𝑖𝑗𝑘  Decision variables. vehicle 𝑘 serves retailer（𝑖, 𝑗), take 1; Otherwise, take 0 

 

The objective of this model is to minimize the expected total cost of the supplier. The model can simultaneously 

determine the time of starting production, production quantities, and vehicle distribution routes. The objective of mathematics 

optimization form and constraints are set out as follows:  

 

𝑚𝑖𝑛𝑍 = ∑ 𝑈

𝑘

+ ∑ 𝑐𝑚

𝑖𝑚

𝑄𝑖𝑚 + 𝑝 ∑ 𝑐𝑖𝑗

𝑖𝑗𝑘

𝑥𝑖𝑗𝑘 + ∑{𝛿𝑚1 𝑚𝑎𝑥{𝑄𝑖𝑚 − 𝐷𝑖𝑚, 0} + 𝛿𝑚2 𝑚𝑎𝑥{𝐷𝑖𝑚 − 𝑄𝑖𝑚, 0}}

𝑖𝑚

+ 𝑔1 ∑ 𝑚𝑎𝑥{𝑒𝑖 − 𝑎𝑖 , 0}

𝑖

+ 𝑔2 ∑ 𝑚𝑎𝑥{𝑎𝑖 − 𝑙𝑖 , 0}

𝑖

 

  

(1) 

∑ ∑ 𝑥𝑖𝑗𝑘 = 1

𝑘𝑗

  𝑖 = 1, . . . , 𝑅 (2) 
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∑ 𝑥𝑖𝑗𝑘 − ∑ 𝑥𝑗𝑖𝑘 = 0, ∀𝑖 ∈ 𝑅, ∀𝑘 ∈ 𝐾   

𝑗∈𝑅𝑗∈𝑅

 (3) 

∑ ∑ 𝑥𝑖𝑗𝑘 ≤ |𝑆| − 1, ∀𝑆 ∈ 𝐽,

𝑗∈𝑆𝑖∈𝑆

∀𝑘 ∈ 𝐾 (4) 

�̂�𝑘,𝑚 ≤ 𝑡𝑘+1,1   𝑘 = 1, . . . , 𝐾 − 1 (5) 

∑ 𝑄𝑗𝑚𝑥𝑖𝑗𝑘 ≤ 𝑄𝑣𝑒ℎ   𝑘 = 1, . . . , 𝐾

𝑖𝑗𝑚

 (6) 

𝑎𝑗 = 𝑚𝑎𝑥{𝑎𝑖 , 𝑒𝑖} + 𝑠𝑖 + 𝑐𝑖𝑗    (7) 

𝑎𝑗 = �̂�𝑘,𝑚 + 𝑐0𝑗  (8) 

�̂�𝑘,𝑚 = 𝑡𝑘,𝑚 + 𝑡𝑚 ∑ 𝑄𝑖𝑚𝑥𝑖𝑗𝑘   

𝑖𝑗

 (9) 

𝑡𝑘,𝑚+1 = �̂�𝑘,𝑚    (10) 

 

Objective function formula (1) minimizes the supplier’s total cost, which includes the setup cost of the vehicle, 

production cost, VRP cost, decayed or shortage cost, and time window penalty cost. Constraint (2) indicates that a retailer 

can only be served once at a time. Constraint (3) indicates vehicles serving retailer i must leave this node after service. 

Constraint (4) designates route constraint to eliminate the inner loop. Constraint (5) states that the end time of one vehicle 

shall not be later than the next vehicle’s start production time. Constraint (6) is vehicle capacity limitation. Constraints (7) 

and (8) define the time to reach retailer j. Constraint (9) defines the end time for vehicle k to production m. Constraint (10) 

indicates that for the same vehicle k, the end time of producing products m is the start time of producing products m+1.  

 

4. THE HYBRID APPROACH OF ACO AND FAGA 
 

The proposed algorithm addresses the complex challenge of optimizing both production scheduling and vehicle routing with 

time windows, a problem known to be NP-hard, meaning it is computationally intensive and difficult to solve efficiently. 

Given the low probability of randomly generating feasible solutions, the algorithm begins by using a heuristic approach to 

create a set of viable solutions, which form the initial population for further optimization. The algorithm operates in four 

stages: 

 

Stage 1: Initialization. Define the problem parameters, including production constraints, vehicle capacities, time 

windows, etc. 

Stage 2: Initialize a population of ants (solutions) with random schedules or routes.  Simulate the behavior of ants 

exploring the solution space, iteratively improving the solution based on pheromone trails. Use ACO to 

identify promising schedules or routes that balance production efficiency and vehicle routing with demand 

uncertainty. 

Stage 3: Take the promising solutions from ACO as the initial population for the genetic algorithm. Apply genetic 

operations like selection, crossover, and mutation, with fuzzy logic adapting these parameters based on the 

solution quality and problem specifics. Iterate until convergence, producing a finely-tuned solution that meets 

the optimization objectives. 

Stage 4: Final Output. The algorithm outputs an optimized production schedule and vehicle routing plan that is robust 

against demand randomness and satisfies the constraints of the problem. 

 

Together, these four stages work to provide an optimized solution for both production scheduling and vehicle routing, 

balancing efficiency and feasibility in the distribution of fresh products. The hybrid two-stage algorithm of ACO and FAGA 

is shown in Figure 1. 
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Figure 1. Algorithm process 

 

4.1 ACO Algorithm 

 

Production scheduling problems are typically optimized with a single objective, such as minimizing the Makespan of tasks. 

The Makespan represents the total time required for tasks to reside within the system, offering a comprehensive measure of 

production time. However, as product life cycles shorten and customer demands increase, enterprises face growing pressure 

to meet on-time delivery requirements. Consequently, minimizing penalties for early or delayed product delivery has become 

a crucial metric for evaluating scheduling system performance. ACO algorithm, initially proposed by Dorigo (1996) for 

solving the Traveling Salesman Problem (TSP), has been successfully applied to a range of combinatorial optimization 

problems, including those in traveling salesman, vehicle routing, and scheduling. 

 

(1) Production task assignment 

Each task process is treated as a node that an ant traverses, with ants following task priority constraints. The ant selects paths 

through each task process, which correspond to the choice of processing equipment. During this process, ants aim to minimize 
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the total load and distribute it evenly across devices, thereby selecting the route that yields the shortest processing time. The 

probability that ant k transfer from equipment 𝑖 to equipment 𝑗 in time𝑡 was shown in Equation (11):  

 

𝑝𝑖𝑗
𝑘 = {

𝜏𝑖𝑗
𝛼 (𝑡)𝜂𝑖𝑗

𝛽 (𝑡)

∑ 𝑠 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘𝜏𝑖𝑗
𝛼 (𝑡)𝜂𝑖𝑗

𝛽 (𝑡)
      , 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

0                                        , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

 

where, allowed={0，1，. . . , 𝑛 − 1}.𝜏𝑖𝑗 is the level of pheromone between equipment i and j. The 𝜂𝑖𝑗 is the intensity of the 

pheromone trail between equipment i and j. 𝜂𝑖𝑗 make the equipment with less load and short processing time has a high 

probability of being selected as the processing equipment. The α and β are the weight of importance for the pheromone level 

and heuristic information.  

 

(2) Production task sequencing 

The task assignment results obtained in the first stage are organized into distinct vector groups based on equipment, utilizing 

an equipment-specific e-based coding method. Each vector component contains detailed information, including task number, 

process number, equipment number, priority value, processing time, and available processing time. The objective is to 

optimize the processing sequence for each piece of equipment, thereby minimizing the maximum task completion time. As 

the ant traverses the tasks assigned to a particular piece of equipment, it determines the optimal task processing sequence. 

During the task sequencing stage, ants construct the solution sequence by selecting subsequent tasks using a pseudo-random 

proportional state transition rule. 

Ant colony algorithm effectively combines the principle of information positive feedback and heuristic algorithm. The 

design of 𝜂𝑖𝑗is the key to the ant colony algorithm. When the group size is large, it isn't easy to obtain the optimal solution in 

a short time. If the information amount of a path generated changes randomly too fast, search stagnation could easily occur. 

To control the change rate of information amount, the following method is adopted to select the next customer to be visited: 

ant k randomly generates a pseudo-random parameter𝑞0. The ant selects the next task j to be processed by equipment km 

using the state transition rule of pseudo-random proportion. The rule is given by Equation (12), and J is determined by 

Equation (13). 

 

𝑝𝑖𝑗
∗,𝑘 = {

(𝜏𝑖𝑗
∗,𝑘)𝛼(𝑡)(𝜂𝑖𝑗

∗,𝑘)
𝛽 (𝑡)

∑ 𝑠 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘(𝜏𝑖𝑗
∗,𝑘)𝛼(𝑡)(𝜂𝑖𝑗

∗,𝑘)
𝛽 (𝑡)

      , 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

0                                                    , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12) 

 

𝑗𝑖𝑗(𝑘) = {
𝑎𝑟𝑔  max{𝜏𝑖𝑗(𝑘)𝜂𝑖𝑗(𝑘)

𝛾
}    ,   𝑞 ≤ 𝑞0

𝐽      , 𝑞 > 𝑞0

 (13) 

 

𝑝𝑖𝑗
∗,𝑘

is the probability that the ant k travels to order i and selects task j, 𝜏𝑖𝑗
∗,𝑘

is the pheromone level between task sequences 

on the device; 𝜂𝑖𝑗
∗,𝑘

 is task j elicits information at the order i arranged in device k Currently, r is the full load rate of the vehicle, 

𝛾 = (∑ 𝑠𝑢𝑚_𝑙𝑜𝑎𝑑𝑘(𝑖)𝑖∈𝐿𝑘
)/𝑄𝑉 , where QV is the maximum load constraint of the vehicle, Lk is the route Kth ant and 

𝑠𝑢𝑚_𝑙𝑜𝑎𝑑𝑘(𝑖) is the sum of customer demand of the route taken by the Kth ant, it can be seen that r can improve the diversity 

of task selection.  

The pheromone is updated using the following rule: 

 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + ∑ 𝛥𝜏𝑖𝑗
𝑙

𝐿

𝑙=1

 (14) 

 

where 𝜌 is a persistence or trail and lies between [0,1] and (1 − 𝜌) is the evaporation rate. The higher value of 𝜌 suggests 

that the information gathered in the past iterations is forgotten faster. 𝛥𝜏𝑖𝑗
𝑙  is the pheromone deposited by kth ant when 

walking through the node i to j, when edge (i, j) is on the route constructed by ant k, then 𝛥𝜏𝑖𝑗
𝑙 =

𝑄

𝐿𝑘
. Q is the pheromone 

constant, and 𝐿𝑘 is the length of tour of the kth ant. When edge (i, j) is not on the route constructed by ant k, then𝛥𝜏𝑖𝑗
𝑙 = 0.  

To make the algorithm find a better solution in the initial algorithm, the value of parameter 𝜌 is set in [0, 1]. When there 

is a large-scale problem due to pheromone evaporation, the pheromones of the routes that have never been searched reduce 
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to zero. It is necessary to reduce the algorithm's searchability in this route. Conversely, when the pheromone is more 

significant, it also affects the global search ability of the algorithm. At this time, changing the pheromone evaporation rate 

through setting the maximum and minimum value 𝜏can be adaptively changed by Equation (15):  

 

{
𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)1+𝜆(𝑛)𝜏𝑖𝑗(𝑡) + 𝛥𝜏𝑖𝑗 , 𝑖𝑓𝜏 ≥ 𝜏𝑚𝑎𝑥

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)1−𝜆(𝑛)𝜏𝑖𝑗(𝑡) + 𝛥𝜏𝑖𝑗 , 𝑖𝑓𝜏 ≤ 𝜏𝑚𝑖𝑛{
 (15) 

 

𝜆(𝑛) is a function which is proportional to the number of convergence times; the more convergence times, the greater𝜆(𝑛). 

The route-solving process proceeds as follows: 

 

Step 1: Problem and ant colony initialization. Begin by representing the production tasks as a graph, where nodes 

correspond to tasks and edges denote the relationships or transitions between tasks. An adjacency list is 

employed to capture these task relationships. The initial population is primarily generated using a random 

method, with a small subset of the initial species group created through heuristic rules. These rules prioritize 

the selection of key equipment by arranging processes with the shortest priority processing time and the longest 

remaining processing time. 

Step 2: Path selection by ants. Each ant selects paths within the graph according to the heuristic rules of the ant colony 

optimization algorithm. Path selection is guided by a probability-based strategy that integrates pheromone 

concentration and heuristic information. 

Step 3: Pheromone update. Following the path selection, pheromone concentrations are updated based on the quality 

of the paths chosen by the ants. This involves both pheromone evaporation and deposition to appropriately 

adjust the pheromone levels. 

Step 4: Iteration. Steps 2 and 3 are repeated iteratively until a predefined stopping condition is met, typically 

determined by reaching a maximum number of iterations. 

Step 5: Result decoding. The final step involves decoding the results based on the pheromone concentrations or the 

paths selected by the ants. The chosen paths are then converted into an optimal production scheduling plan. 

 

4.2 Fuzzy adaptive genetic algorithms (FAGA) 

 

Genetic algorithms (GA) have been prevalent in recent decades to solve optimization problems because of their robustness 

in finding the optimal solution (Orero SO, et al,1998). In traditional GA, the probability of crossover (Pc) and mutation (Pm) 

is constant through generations and often empirically determined, which vary according to aforethought criteria and are 

updated in response to some feedback on the actual status of the search. The most challenging problem of traditional genetic 

algorithms is how to achieve optimal accuracy in good time. The key to improvements is suitable mutation and crossover 

rates. Aimed at improving GA efficiency and avoiding suboptimal solutions by suitably controlling some key GA parameters, 

the fuzzy adaptive genetic algorithms (FAGA) proposed by Vannucci and Colla (2015)]. FAGA modifies the GA parameters 

through a fuzzy inference system that interprets the search status. Pc and Pm are two genetic parameters that change 

dynamically during the generation of the genetic algorithm. Using fuzzy rules to make the algorithm more efficient. The rule 

base recreates adaptive strategies that make optimizations predictable to follow (Herrera et al., 2003). Best fitness, Pc and 

Pm consisted of fuzzy set low, medium, and high. Best fitness was used as input in the fuzzy rules, while the outputs were 

the Pc and the Pm. The fuzzy adaptation helps the algorithm dynamically adjust to the problem's specifics, such as varying 

demand or time window constraints, ensuring the final solution is robust and optimized. 

 
4.2.1 Fuzzy adaptive parameter setting 

 

The difference of samples can express the progress status of the genetic algorithm by Equation (16): 

 

𝐷1 =
𝑓𝑚 − 𝑓𝑎

𝑓𝑚
∈ [0,1] (16) 

 

𝑓𝑎 is the average fitness of the sample;𝑓𝑚 is the maximum fitness of individual samples. 

The fitness function in a genetic algorithm is tailored to specific problems and requirements, resulting in its value varying 

depending on the issue being addressed. This variation makes it difficult to assess the current progress of the genetic algorithm 

solely based on the difference between𝑓𝑚 and 𝑓𝑎. To enhance the generality of the algorithm, a transformation is applied. 

During the initial stages of the genetic process, sample diversity tends to be high, leading to a relatively large value in Equation 
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(16). However, as the genetic process progresses, especially during the later stages or when the algorithm converges toward 

a local optimum, the value of Equation (16) diminishes. The difference among sample individuals can be quantified using 

Equation (17): 

 

𝐷2 =
𝑓 − 𝑓𝑎

𝑓𝑚
∈ [−1,1] (17) 

 

Equation (17) also converts the value into the interval [-1, 1] by dividing by𝑓𝑚, which increases the generality of the 

algorithm and facilitates fuzzy reasoning. 

The fuzzy variable 𝐷1is simply divided into three sets {low, medium and high}; similarly, the fuzzy variable 𝐷2is 

divided into three sets {positive, zero, negative}; the output crossover rate 𝑃𝑐 and variation rate 𝑃𝑚can also be divided into 

three sets {low, medium and high }.If 𝐷1is "high", it indicates that the sample diversity is good, and the 𝑃𝑐 and 𝑃𝑚 should be 

"low". On the contrary, if 𝐷1 is "low", then 𝑃𝑐  and Pm should be "high". If 𝐷2is "positive", it indicates that the individual is 

"excellent", while 𝑃𝑐 and 𝑃𝑚 should be "small". On the contrary, if 𝐷2 is "negative", it indicates that the individual is "poor", 

while 𝑃𝑐  and 𝑃𝑚  should be "large". Therefore, based on the above rules, the following fuzzy reasoning process can be 

obtained:  

If 𝐷1is low and 𝐷2is negative, then 𝑃𝑐 and 𝑃𝑚 are high;  

If 𝐷1is high and 𝐷2is positive, then 𝑃𝑐 and 𝑃𝑚 is low. 

Other rules can be obtained by similar reasoning. The summarized fuzzy rules are shown in Table 3.  

 

Table 3. Fuzzy adaptive genetic operator rule table 

 

𝐷1 𝐷2 

positive zero negative 

low high medium high 

medium low medium high 

high low  medium low 

 

4.2.2 FAGA based on a fuzzy operator rule 

 

In this level, FAGA based on a fuzzy operator rule is implemented as an optimization technique that can be used to achieve 

optimization objectives.  

 

(1) Chromosome Coding and initial population generation 

The encoding of the solution. Using the natural number coding method, the number of customer points is J, and number of 

vehicles is K, and each individual corresponds to a row vector of (J+K+1) dimension. The real numbers 1 to J represent the 

customer point, and 0 represents the distribution center to distinguish different vehicle routes. The starting and ending loci of 

each vehicle route must be 0. Figure 2 is a simple example of two available vehicles (K=2) and seven customers (J=7), the 

customer set J= {1,2..., 7}, 0 represents the distribution center, which is used to separate the driving route of two vehicles. 

Vehicle 1 starts from distribution center 0, visits customers 1, 4, and 5, and returns to the distribution center (0-1-4-5-0). 

Vehicle 2 starts from distribution center 0, visits customer points 2, 3, 6, 7, and returns to the distribution center (0-2-3-6-7-

0).  

 

0 1 4 5 0 2 3 6 7 0 

 

Figure 2.  A simple example of coding 

 

The quality of the initial solution has a significant impact on the algorithm's performance. The hybrid insertion method 

is adopted to construct the initial solution to expand the search space and improve the quality of solutions. Specifically, when 

an individual is generated, the customer randomly arranges the earliest service start time in ascending order, the latest end 

time of service in ascending order, and random order to wait for insertion and inserts it to the feasible position with the lowest 

cost. 
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(2) Genetic operators 

Due to multiple 0 in chromosomes, the traditional cross operation may result in various distribution centers being connected. 

The selection of the individuals is made according to Equation (18), (19).  

 

𝑝𝑐 = {
0.9 − 0.2(𝑓1 − 𝑓𝑎)/(𝑓𝑚 − 𝑓𝑎), 𝑓 ≥ 𝑓𝑎

0.9, 𝑜𝑡ℎ𝑒𝑟𝑠
 (18) 

 

𝑝𝑚 = {
0.1 − 0.09(𝑓𝑚 − 𝑓)/(𝑓𝑚 − 𝑓𝑎), 𝑓 ≥ 𝑓𝑎

0.1, 𝑜𝑡ℎ𝑒𝑟𝑠
 (19) 

 

(3) In this paper, the fitness function is given by the objective function of the distribution problem:  

 

𝑓𝑁(𝑎𝑘) =
1

1 + 𝑇𝐶(𝑎𝑘)
 (20) 

 

𝑎𝑘: a kind of distribution plan; 𝑇𝐶(𝑎𝑘) the cost of distributing 𝑎𝑘.  

The steps of the FAGA are as follows:  

Step 1: Generate the initial population, set the algebra to 0, and the number of individuals is M. Input data that products 

quantity and production time solved by ACO in first stage. 

Step 2: Perform selection operator, crossover operator, and mutation operator successively, and calculate the 

individual's fitness. 

Step 3: Carry out a one-time series optimization of a complex system with fuzzy variable weights for the individual 

with the highest fitness. 

Step 4: Get a new population P(t+1) generation and increase the algebra by 1. 

Step 5: Judge whether it meets the optimization criteria. If not, return step 2; if so, end. 

 

5. EXPERIMENTAL RESULTS 

 

Matlab R2020b is used to compile algorithm in i7-6700 CPU 4GHz,16G RAM computer running, take PoP=30 to 60 and 

MaxN=30 to 300. Retailers' information is created, and a few are modified from Solomon's problem (Solomon MM, 1987). 

According to the trial design characteristics concerning relevant literature practice, the following example: a food processing 

factory produces five kinds of fresh products. The complimentary food has different production times, costs, and damage 

costs.  

 

5.1 Determine the key combination parameters  

 

In the context of ACO parameters, a higher pheromone heuristic factor increases the importance of pheromone trails, making 

ants more likely to select previously traversed paths. Conversely, a larger expected heuristic factor enhances the likelihood 

of ants exploring new routes. A lower global pheromone evaporation rate slows down the dissipation of pheromones, thereby 

aiding in the identification of superior solutions. Additionally, a higher global influence factor amplifies the impact of the 

current optimal solution on the overall optimization process. The pseudo-random probability 𝑞0 is introduced for the ant 

colony system framework, and the parameter 𝑞0  plays a crucial role in algorithm performance. Before verifying the 

algorithm's performance, the influence of different parameter combinations on the algorithm's performance is analyzed 

through simulation experiments to determine the better parameters combined configuration. 

According to the experimental analysis of ACS by DORGO, the experimental values of 𝛼, 𝛽, 𝑞0, 𝜌 are set as {0.6,1,2,3}，

{2, 3, 4, 5}，{0.5, 0.6, 0.7, 0.8}，{0.1,0.2,0.3,0.4}. The uniform table design is shown in Table 3. The numbers in Table 4 

represent the value levels of parameters.  

Set task number T=10, initial ant colony number An=100, iterations number Iter=150, initial pheromone value 𝜏0=10. 

Generate examples randomly, and the calculation examples of each parameter combination were independently run 20 times. 

When the parameter combination is 12, 𝛼 = 2, 𝛽 = 3, 𝑞0 = 0.8, 𝜌 = 0.1The results are concentrated, and the degree of 

discretization is low.  

In FAGA parameters, a Triple membership function is adopted for output parameters Pc and Pm (Tian D P,2008). The 

value range of restricted crossover probability Pc is [0.4, 1], and the value range of variation probability Pm is [0, 0.2], as 

shown in Table 5.  
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Table 4. Uniform test plan uniform table design 

 

parameter 
 plan number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

𝛼 2 2 2 3 2 2 2 3 2 2 2 3 4 1 2 4 

𝛽 1 4 1 4 4 1 3 1 3 4 3 3 2 2 3 4 

𝑞0 1 4 3 2 4 3 1 4 1 3 4 2 1 4 3 2 

𝜌 1 1 4 3 3 4 3 2 4 3 1 1 2 2 2 2 

 

Table 5. Crossover and mutation probability 

 

 Pc Pm 

higher [0.85,1] [0.15,0.19] 

high [0.75,0.85] [0.08,0.14]] 

medium [0.65,0.8] [0.04,0.07] 

low [0.5,0.75] [0.02,0.05] 

lower [0.45,0.65] [0.001,0.02] 

 

5.2 Analysis of model calculation results 

 

The experiment shown in Figure 3 can deduce the relationship between the vehicle's number, average loading ratio and 

optimization objective. With the increase of the number of vehicles, the average loading rate of vehicles decreases. The more 

vehicles used, the less time it takes to produce and deliver each vehicle. The objective cost includes the vehicle start-up cost, 

so as the vehicle number increases, it can't always decrease the total cost. After arrival in a particular value, it will lead to 

cost increases.  

 

 
 

Figure 3. Relations between average loading ratio and the number of vehicles 

 

There is a trade-off in vehicle number, decay rate, and objective cost. Considering fresh food, the generally preferred 

decay rate, which is greater than the time window punishment on the influence of the objective function, especially retailers 

have requirements in both products and time. At first, the supplier is preferred the product’s decay rate and increased vehicles. 
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Still, when the decay rate and the time window are in the controllable cost, the supplier should consider the vehicle loading 

ratio, and vehicle start-up cost to avoid increasing total cost.  

A series of tests with different proportions of retailers for the same vehicle size is run when the time varies from 0%, 

10%, 20%, 30%, 40%, 50%. Such as TW(20%) means that 20% of retailers have a request for a time window. Figure 4 

indicates that the objective function increases as the decay rate increases for all tests with different percentages of time 

windows required.  

 
 

Figure 4. Objective values under different TW and decay rate 

 

Figure 4 shows the effect on the objective function with the different combinations of the decay rate and time window 

penalty coefficients. The product decay rate is (0.1, 0.5), and the time window penalty coefficient is (0,0.8). When both the 

decay rate and the time window penalty coincide, the objective function increases accordingly. The effect of the decay rate 

on the objective function is greater than the time window penalty, especially when the retailer has requirements for both the 

product and the time; the supplier should prioritize the product’s decay rate.  

 

5.3 VRPTW numerical experiment 

 

Classic VRPTW considers the following two factors: (1) the vehicle travels at a constant speed, and (2) all vehicles start from 

the same distribution center and return to the distribution center. The route model in this paper is a special case of VRPTW 

when partially constrained are relaxation, and the model collapsed into the classical VRPTW model. Therefore, the Solomon 

VRPTW’s benchmark data is selected as numerical experiments on 18 examples of class C data to verify the effectiveness of 

the proposed algorithm. The vehicle capacity in this calculation example is both 200. All routes use a constant speed 

distribution, whose value is set to 1. Table 6 records the known optimal solution of classical VRPTW in the Sbest column and 

the calculation time obtained by Kohl et al. (1999) in the Tbest column as a reference for the experimental results. The optimal 

solution of the benchmark instance solved by the FAGA algorithm is recorded in the Fbest column, and its calculation time 

percentage difference between Sbest and Fbest t is recorded in the Gap column (in seconds) in the CPU time column. Gap=(Fbest-

Sbest)/Sbest×100. Sbest data comes from http://web.cba.neu.edu/~msolomon/c1c2solu.htm.  

 

Table 6. Experimental results of class C VRPTW benchmark dataset 

 

example n 
Best known solution FAGA best solution 

vehicles Sbest Ttime vehicles Fbest Gap (%) CPU time 

c101 50 5 362.4 2.48 5 363.28 0.24  1.88 

c102 50 5 361.4 13.99 5 361.41 0.00  3.02 

c103 50 5 361.4 33.78 5 361.42 0.01  3.05 

c104 50 5 358 884.5 5 363.21 1.46  5.83 

c105 50 5 362.4 5.83 5 363.28 0.24  9.92 

c106 50 5 362.4 1.25 5 363.27 0.24  68.56 

c107 50 5 362.4 3.85 5 363.27 0.24  14.12 

javascript:;
http://web.cba.neu.edu/~msolomon/c1c2solu.htm
javascript:;


Na Li A Two-stage Algorithm for Production Distribution Optimization of Fresh Products  

 

122 

example n 
Best known solution FAGA best solution 

vehicles Sbest Ttime vehicles Fbest Gap (%) CPU time 

c108 50 5 362.4 8.21 5 363.26 0.24  4.05 

c109 50 5 362.4 5.34 5 363.26 0.24  1.39 

c101 100 10 827.3 5.86 10 829.02 0.21  9.69 

c102 100 10 827.3 111.4 10 838.98 1.41  10.76 

c103 100 10 826.3 679.7 10 840.57 1.73  8.53 

c104 100 10 822.9 1216 10 828.48 0.68  13.17 

c105 100 10 827.3 33.21 10 829.13 0.22  11.62 

c106 100 10 827.3 23.7 10 830.52 0.39  11.96 

c107 100 10 827.3 36.92 10 831.48 0.51  13.52 

c108 100 10 827.3 42.2 10 828.15 0.10  10.67 

c109 100 10 827.3 72.9 10 829.73 0.29  14.78 

 

5.4   Algorithm comparison and analysis 

 

To evaluate the performance of the proposed FAGA, the research compares it with a traditional GA that utilizes basic constant 

parameters. The termination criterion for both algorithms is based on the fitness value, which assesses the convergence rate 

at which each algorithm approaches the current optimal solution. Convergence is determined when the optimal fitness value 

is attained; otherwise, the algorithm is considered non-convergent. In the basic GA, the mutation and crossover probabilities 

are set at 0.05 and 0.85, respectively. To validate the effectiveness of the proposed algorithm, this experiment selected five 

groups of relevant test examples for analysis, as presented in Table 6. The optimal solutions obtained by the ACO-FAGA are 

compared with those derived from the Variable Neighborhood Search (VNS) algorithm (Hansen et al., 2008) and the GA. In 

this comparison, M represents the optimal solution identified by the three algorithms, while t denotes their respective 

computational times in seconds. 

As can be seen from Table 7, the average solving time of the VNS algorithm is 3.874s, the average solving time of GA 

is 3.862s, and the average solving time of ACO-FAGA in this paper is 3.744s. The average solving time of ACO-FAGA is 

3.33%, improved on average compared with the optimal values of the previous two. Optimal solution gap percentage 

difference between FAGA and VNS, GA are recorded in the MGap(%). The results and solving time of the proposed algorithm 

are superior to the last two algorithms. Based on the above analysis, the algorithm in this paper has high quality and fast 

solution speed, which further verifies the algorithm's effectiveness.  

 

Table 7. Simulation results of the three algorithms 

 

VNS GA ACO-FAGA MGap(%)(with ACO-FAGA) 

 M t M t M t VNS GA 

1 630.24 3.23 639.52 3.22 624.19 3.19 0.97  2.46 

2 774.39 3.36 781.45 3.37 763.57 3.28 1.42  2.34 

3 823.17 3.85 829.56 3.83 815.72 3.72 0.91  1.70 

4 890.58 4.26 901.73 4.24 881.29 4.07 1.05  2.32 

5 987.73 4.67 992.56 4.65 975.44 4.46 1.26 1.76 

 

In comparison to previous studies, the contributions of this paper are distinct in several key ways. Chen et al. (2008) 

focused on the problem of production scheduling and vehicle routing for perishable food products, primarily utilizing time-

oriented nearest neighbor domain algorithms, which were effective in generating feasible solutions quickly. However, their 

approach had limitations in handling complex scenarios involving stochastic demand or dynamic decay rates. Li and Wei 

(2010) applied a genetic algorithm that considered time-dependent vehicle routing. While the algorithm was adept at adjusting 

to traffic patterns, it did not integrate production scheduling with routing, limiting its application to scenarios where 

production schedules are flexible or predetermined. The ACO-FAGA approach in this research bridges this gap by 

simultaneously optimizing production and distribution, thus offering a more comprehensive solution to the VRPTW problem. 

Shao et al. (2015) and Peng (2019) explored genetic algorithms for optimizing fresh agricultural product distribution routes, 

incorporating time windows and customer satisfaction metrics. 

Nevertheless, these studies did not integrate production scheduling with routing decisions, nor did they employ a two-

stage approach that could more effectively balance the trade-offs between decay rates and time window penalties, as 

demonstrated in this paper. Hu et al. (2017) introduced a two-stage decomposition method for fresh product distribution, 
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which shares similarities with this paper. However, the hybrid algorithm presented here offers enhancements in solving 

VRPTW by incorporating fuzzy adaptive mechanisms to dynamically adjust genetic algorithm parameters, leading to 

potentially better optimization outcomes. Mousavi et al. (2022) proposed a stochastic model with a five-phase metaheuristic 

algorithm that was highly effective in dealing with uncertainty, offering robust solutions for production routing problems in 

volatile environments. While their algorithm was computationally intensive, it provided comprehensive solutions that 

accounted for multiple variables. In this paper, the stages of the algorithm are appropriately simplified to enhance efficiency. 

In summary, this research advances the existing body of knowledge by offering a robust, integrated approach that optimizes 

both production and distribution processes in fresh product supply chains. It addresses the critical challenge of balancing 

decay rates, time window penalties, and cost minimization more effectively than previous models, thereby making significant 

contributions to the theory and practice of logistics management for perishable products. 

 

5.5 Algorithm limitations and assumptions 

 

Two-stage algorithms like Ant Colony Optimization (ACO) and Fuzzy Adaptive Genetic Algorithm (FAGA) are commonly 

used for solving complex optimization problems. However, they come with certain limitations and assumptions: 

ACO can struggle with large-scale problems due to its high computational complexity. The convergence time can be 

very long as the problem size increases. With the increase of the number of products in the study, the complexity of ant 

colony production scheduling and the pathfinding time increase exponentially. In some cases, ACO algorithms can fall into 

a stagnation state where all ants follow the same path, leading to little or no improvement in finding better solutions. ACO 

assumes that all ants are homogeneous and follow the same set of rules, which may not be suitable for all problem types, 

especially those requiring diverse exploration strategies. 

In FAGA, the integration of fuzzy logic with genetic algorithms increases the complexity of the algorithm. Designing 

appropriate fuzzy rules and membership functions requires expertise and can be difficult to generalize across different 

problems. Similar to ACO, FAGA can suffer from slow convergence, especially if the fuzzy rules are not well-tuned. FAGA 

assumes that fuzzy logic is the right approach to handle uncertainties and imprecision in the problem space. However, this 

assumption may not hold true for all types of optimization problems. The algorithm assumes that the fuzzy rules and 

membership functions are well-defined and accurately reflect the problem domain. Poorly designed rules can lead to 

ineffective adaptation and suboptimal solutions. 

Both ACO and FAGA have been widely used and have shown success in various domains, but their effectiveness can 

be limited by issues such as parameter sensitivity, computational complexity, and assumptions regarding the problem 

environment. Addressing these limitations often involves a trade-off between algorithm simplicity and the robustness needed 

to handle complex, dynamic, or large-scale optimization problems. 

 

6. CONCLUSION AND FUTURE RESEARCH 

 

A hybrid algorithm combining ant colony optimization and a fuzzy adaptive genetic algorithm is proposed and applied to 

Solomon's standard test examples to enhance the accuracy and efficiency of solving integrated production and vehicle routing 

problems with time windows. The results demonstrate that: (1) The hybrid algorithm exhibits robust route-searching 

capabilities and high solution accuracy, making it particularly suitable for specific cases involving cluster and random 

distribution problems with relaxed time window constraints. (2) The sensitivity of the algorithm to the number of iterations 

underscores the importance of selecting an appropriate iteration count. (3) To increase the likelihood of achieving optimal 

solutions, a two-stage parallel search algorithm with an inheritance mechanism is developed by effectively integrating 

production scheduling and vehicle routing optimization. (4) Key algorithm parameters are identified through uniform testing 

and statistical analysis, ensuring the algorithm's optimal performance. (5) The proposed algorithm is validated through several 

examples, with experimental results confirming its efficiency and the high quality of the solutions. 

The paper addresses a critical issue in supply chain management for perishable products, particularly in the context of 

fresh products. The significance of this problem is underscored by several key factors:(1) Perishability of products: Fresh 

products, such as food items, are highly perishable and require timely production and distribution to maintain quality and 

minimize waste. The deterioration of these products directly impacts both supplier costs and consumer satisfaction. Hence, 

optimizing the supply chain for these products is essential for reducing losses and ensuring product quality. (2) Complexity 

of supply chains: The problem involves complex decision-making processes that include production scheduling and VRPTW. 

This complexity is further amplified by the need to consider perishability, stochastic demand, and urban traffic conditions. 

Addressing these intertwined challenges is crucial for improving the efficiency and sustainability of supply chains for fresh 

products. (3) Economic impact: Efficiently managing the production and distribution of perishable products can lead to 

significant cost savings and increased profitability for businesses. It also has broader implications for food security, waste 

reduction, and resource optimization, making it a problem of considerable economic and societal importance. 
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The timeliness of the problem is highlighted by contemporary trends. The rise of e-commerce and just-in-time (JIT) 

delivery systems has placed new demands on supply chains, particularly for perishable products. Consumers now expect fast 

and reliable delivery, which adds pressure to optimize logistics operations in real time. This research focus on addressing 

these modern challenges makes the research highly relevant. Increasing urbanization has led to more congested cities, making 

it more difficult to adhere to delivery schedules, especially when dealing with perishable products. The manuscript’s attention 

to these challenges is timely, as it reflects current and pressing issues in urban logistics. 

The practical implications of the research are substantial: (1) Improved supply chain efficiency: By integrating 

production scheduling with VRPTW in a novel two-stage optimization model, the research provides a practical tool for 

companies to enhance the efficiency of their supply chains. This can lead to more reliable delivery schedules, reduced waste 

due to spoilage, and lower operational costs. (2) Scalability to real-world applications: The proposed model is designed to 

handle the complexities of real-world supply chains, making it scalable and adaptable to various industries dealing with 

perishable products. Its application can be extended beyond fresh products to other sectors where timing and perishability are 

critical. (3) Potential for adoption in smart logistics systems: As companies increasingly adopt smart logistics systems that 

rely on real-time data and advanced algorithms, the research offers a robust framework that can be integrated into these 

systems. This can lead to better decision-making and more responsive supply chain operations. (4) Contribution to sustainable 

development: By optimizing the production and distribution of perishable products, the research contributes to sustainability 

by reducing food waste, minimizing carbon emissions from unnecessary transportation, and ensuring that resources are used 

more efficiently. 

The problem addressed by the research is both significant and timely, with practical potentials that extend to various 

aspects of supply chain management and logistics. The research offers a valuable contribution to the field by addressing a 

critical and contemporary issue, applying advanced optimization techniques, and providing solutions with real-world 

applicability. Its relevance to current trends in e-commerce, urbanization, and technological advancement further underscores 

its importance and potential impact on industry practices. The analysis reveals that the product deterioration rate significantly 

impacts production costs and distribution strategies, highlighting the need for further exploration of manufacturer-retailer 

coordination under these conditions. Future research should focus on developing an advanced ACO-based algorithm to 

address multi-objective production-distribution optimization, particularly for perishable products. Additionally, incorporating 

environmental factors such as vehicle carbon emissions and fuel consumption could facilitate the simultaneous optimization 

of economic and ecological outcomes. To enhance the flexibility of urban delivery, future studies should also examine 

strategies for minimizing the number of vehicles required, considering the diversity of vehicle types. 
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