
International Journal of Industrial Engineering, 32(1), 67-92, 2025

DOI: 10.23055/ijietap.2025.32.1.10159 ISSN 1072-4761 © INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING

DCNN-BIGRU: A PROFICIENT HYBRID CLASSIFIER FOR RELIABLE INTRUSION

DETECTION AND PREVENTION: HYBRID APPROACH

Neeraj Sharma1, * and Neelu Nihalani2

1Department of Computer Science & Engineering

University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya

Madhya Pradesh, India
*Corresponding author’s e-mail: neerajsharmans12@gmail.com

2Department of Computer Applications

University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya

Madhya Pradesh, India

Advances in networking devices have revolutionized many industries by enabling intercommunication and automation in

multiple areas, such as healthcare, transportation, and manufacturing. However, the threat of cyber-attacks has also

escalated with the increased connectivity and dependency on these devices. Cyber security has become critical in protecting

networks from malicious activities, ensuring the privacy and integrity of the data transmitted. Multiple deep-learning

methods face multiple challenges in identifying intrusion threats; however, deep learning can self-enhance and scale up for

reliability. We propose an efficient hybrid deep-learning intrusion-detection classifier, DCNN-BiGRU. The classifier has a

simple architecture and works well in environments that do not require saving long-term dependencies and where

computational resources are limited. It achieved a multiclass-classification accuracy of 99.70% on the training and test

datasets.

Keywords: Cyber Security, Intrusion Detection System, Hybrid, Anomaly Detection, Machine Learning, Network Attacks.

(Received on May 28, 2024; Accepted on October 5, 2024)

1. INTRODUCTION

Networks have reached millions of interconnected data-transmission devices or pieces of equipment that convey massive

quantities of data. They offer a lot of advantages and benefits; however, they are susceptible to increased risk of fraud

because they can be penetrated, enabling hackers to access information and data communicated through the networks.

Intrusion detection systems (IDSs) are crucial in detecting, stopping, and preventing breaches in inter-networking networks

(Khraisat et al., 2019). Traditional intrusion-detection methods fail to effectively detect intrusion over networks (i.e.,

signature-based IDS methods are inefficient in evaluating attack patterns such as signature-based detection) and may not

sufficiently address the sophisticated and evolving nature of network attacks. Therefore, advanced and efficient IDS models

are needed (Kumar et al., 2022).

Efficient intrusion detection techniques are an important requirement for any network IDS (NIDS) to effectively

detect and prevent anomalies. Most NIDS models use signature-based techniques instead of anomaly-based techniques to

prevent malicious attempts. Hackers employ new and complex methods; IDSs must be capable of self-learning and self-

predicting to deal with malicious attempts. Thus, IDSs need continuous refinements to offer effective protection. Existing

IDSs are continuously refined by upgrading and releasing more stable versions. Intrusion detection works on multiple

paradigms to secure networks against malicious activities, with multiple theories being employed, such as fuzzy-based

clustering or pattern-recognition techniques (Gosain et al., 2022). Enhanced fuzzy clustering and deep-learning techniques

(Altameem et al., 2022) have been employed in behavior analysis to develop new frameworks for intrusion detection.

Neural networks can learn hidden patterns and identify the behavior and relationships that help in prediction. Thus, the

most advanced and successful frameworks based on artificial intelligence use deep-learning-based classifiers. In related

studies, deep-learning models performed well over large datasets. However, in some scenarios, feature- or dimension-

reduction techniques also help IDSs improve their efficiency by removing or transforming unusual attributes. Binary

classification is the paradigm most adopted by multiple traditional IDS techniques to categorize the threat type and pattern.

High-dimensional data impacts the performance of machine-learning (ML) classifiers by degrading their efficiency and

https://orcid.og/10.23055/ijietap.2025.32.1.10159
mailto:neerajsharmans12@gmail.com

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

68

reducing their accuracy. This results in a low attack-detection rate in the training and validation model, which hampers the

detection capability and performance.

Traditional intrusion-detection methods are not that capable as they use key-based transmission or other encryption

and decryption methods to transfer data packets. Some of the most common algorithms are RSA and Diffie hellmen. On the

other hand, ML techniques have outperformed traditional intrusion-detection methods. This paper explores previous

research on feature selection in intrusion detection. Dimension-reduction techniques have been used in multiple

classification scenarios to improve the efficiency of IDSs.

A model should be capable of selecting reliable features from high-dimensional datasets such that its classification

accuracy is not affected. Figure 1 and Figure 6 shows the proposed model and how multiple individual classifiers are placed

in a hybrid classifier framework, together with the order of data processing and flow. To understand the functioning of

various network intrusion detection frameworks, we review various IDS approaches. Our study is based on convolutional

neural network and bidirectional long short-term memory CNN-BiLSTM hybrid neural networks with attention mechanism

(Shan et al., 2021; Gao et al., 2021; Altunay et al., 2023; Zhang et al., 2023), which we enhanced to develop a secure IDS.

The proposed classifier is known as DCNN-BiGRU. Motivated by the hybrid nature of ML classifiers, we developed a

framework that can effectively perform well in systems that are based on multiclass classification with higher accuracy. A

major limitation of multiple classifiers is the decrease in efficiency in multiclass-based classification. In the proposed

framework, we used a bidirectional variant of recurrent neural networks (RNN), which can save dependency patterns for

data evaluation with limited resources.

The contributions of our study are described as follows.

• We develop a hybrid classifier by combining and blending convolutional neural network (CNN) and

bidirectional gated recurrent unit (BiGRU) classifier units with dense neural network (DNN) layers to build a

reliable IDS.

• The proposed classifier works well in the case where it is not required to save long-term dependencies for

modeling sequential data, particularly in cases where computational resources are limited and a simple

architecture is desired using a hybrid-classifier-based approach. It also addresses the gradient vanishing faced by

traditional RNNs. It has less training time for gated recurrent unit (GRU) cells owing to simple architecture, as

two gates and a candidate activation vector are used instead of individual memory cell units.

• The performance of the model is evaluated on a real-time traffic dataset, CICIDS2019, and the results are

compared with those of other hybrid classifiers.

Manual intervention to remove less meaningful attributes results in an increase in the efficiency of the model.

The remainder of this article is structured as follows: Section 2 explains the novelty and contributions of the study.

Related studies are reviewed in Section 3. Section 4 introduces the background of the models used for our analysis. The

proposed model is presented in Section 5. Section 6 presents the experimental analyses and comparison with other models

or classifiers. We evaluate the experimental outcomes and results and also present a comparative study with alternative

intrusion-detection techniques. Section 7 concludes the paper.

2. MOTIVATION & CONTRIBUTION

(i) BiGRU units can re-iterate themselves using weight and enhance performance. GRU has a simpler architecture than long

short-term memory (LSTM) cells as it performs calculations using only two gates (i.e., reset gate and update gate), whereas

LSTM cells use three gates for calculations. Consequently, GRU cells require less computational resources and training

time, making them computationally effective and simple.

(ii) GRU is a form of RNN; it effectively handles the vanishing gradient problem faced by traditional RNNs. In the

calculations that require simple architectures, GRU is a good alternative to LSTM networks. GRU uses a single gate to

control information flow in contrast to the three used by LSTM, which makes it faster to train and execute. However, GRU

cannot save and analyze long-term dependencies; it may perform well in cases that require quick learning and adapting to

new inputs and not in scenarios where networks require saving long-term dependencies. GRU. LSTM and GRU are types

of RNN; they save information from previous inputs, which helps utilize dependencies and context observed between time

steps.

(iii) GRU is used to resolve the problems that arise due to vanishing gradient (i.e., conditions when the weight threshold

becomes so negligible, impacting network learning capability) in simple RNNs. GRU cells contain memory components

capable of remembering information for longer periods. This is achieved using gates that control the flow of information in

and out of a cell. The sigmoid activation function controls these gates using values that range from 0 to 1. The gates can

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

69

enrich the model by allowing it to selectively store or forget the information as per the input information and the previous

cell state.

Figure 1. DCNN-BiGRU Hybrid Approach

We blend the DCNN-BiGRU model in a hybrid manner to inherit the properties of the best classifier network. The

model is suitable for multiclass label scenarios and can adjust, enhance, and scale up. It is a dense form of CNN (i.e.,

DCNN) merged with BiGRU with minimized metrics that replicate in performance enrichment.

3. RELATED STUDIES

We propose a hybrid framework that merges the capabilities of multiple ML algorithms to create an accurate and precise

network intrusion detection system. The proposed model leverages the strengths of individual algorithms to achieve an

enhanced detection performance. The framework consists of three major steps: preprocessing the given data, selecting

features of the required attributes, and training the hybrid algorithm. The deep-learning mechanism plays a very crucial role

in identifying patterns in complex, emerging datasets with complicated representations. The hybrid model contains multiple

IDS techniques to alleviate the impact of false positives or negatives during the prediction mechanism, which helps

minimize the impact of risks that may be generated or faced in the case of individual model scenarios.

Deep learning (DL) plays a significant role in multiple disciplinary fields like healthcare (Shamshirband et al., 2021),

manufacturing, and security (Sarker et al., 2021). In cyber security, Van Huong et al. (2019) suggested a model for logging

the log information and details of users of an Internet of Things (IoT) system, including address, location, and services, into

a dataset. After preprocessing and cleaning, the dataset was transformed into an image-like sparse matrix and used to train a

CNN classifier, which achieved an average accuracy of 98.9%. Wu et al. (2018) proposed a novel method that uses a CNN-

based framework to detect network intrusion. The CNN model tended to improve accuracy even when the class size was

small and reduced the false alarm rate. Gurung et al. (2019) detected intrusions on an NSL-KDD dataset using a DNN

network, achieving 87.2 % accuracy; they aimed to lower the false alarm rate to a minimum threshold using the framework.

With the widespread use of IoT and Android frameworks, the risk of information being compromised has increased;

the information flows between multiple channels and various malicious attempts to access the confidential information are

encountered. A survey of malware detection frameworks was performed by Smmarwar et al. (2024) using deep-learning

techniques.

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

70

Tsogbaatar et al. (2021) proposed a ‘DeL-IoT’ intrusion-detection framework based on the principle of software-

defined networking. The meaningful features were determined using deep and stacked, layered autoencoders. The proposed

framework achieved a high detection rate and accuracy in classifying malicious attack attempts, with 99.5- 99.9% in the F-

score and an accuracy of 91.04%-99.95%. Ullah et al. (2021) proposed a model that incorporates CNN1D, CNN2D, and

CNN3D dense learning for anomaly detection on datasets based on IoT networks, with CNN as the core component of the

model. The proposed IDS framework was evaluated on several IoT-based IDS datasets, such as BoT-IoT, IoT-DS-2, IoT-

23, and MQTT-IoT-IDS2020. The accuracy of the model was observed in multiclass-classification-based scenarios (i.e.,

cases where datasets contain various attack labels).

Currently, malicious content writers create AI-driven malicious codes to bypass security checks—their nature is

difficult to guess and identify. To counter this, hybrid classifiers based on explainable artificial intelligence (XAI) have

been proposed, which inherit the capabilities of CNN and BiGRU networks. Smmarwar et al. (2023b) proposed XAI-

AMD-DL and tested its performance on the CICAndMal2019 Android malware dataset.

An Android malware-detection framework was proposed by Smmarwar et al. (2022c), where data preprocessing was

performed owing to the complex nature of datasets and feature selection was done using discrete wavelet transform.

Further, a light-weighted CNN version was applied on the optimized dataset for classification purposes. The overall

framework was composed of three major phases: discrete wavelet transform was used as a feature selector, a generative

adversarial network was formed, and further classification was done in the third phase.

Roopak et al. (2020) proposed a hybrid intrusion-detection model consisting of CNN and LSTM. The model

performance was tested on the CISIDS2017 dataset. A non-dominated sorting genetic algorithm was used for feature

selection and simple dimension reduction. A model for anomaly identification using a vector convolutional DL technique

was proposed by Amma et al. (2020). It achieved 99.7496% accuracy in multiclass classification on a BOT-IOT dataset.

Popoola et al. (2021) proposed a hybrid LAE-BLSTM model for BOT-IOT datasets, achieving an accuracy of 91.89 %,

with a reduction in dataset size.

Bhatt et al. (2018) proposed a hybrid anomaly-detection model based on DL and a decision module, achieving an

accuracy of 98%. The model consists of four major components: isolation forest, self-organizing map, one-class support

vector machines, and Gaussian mixture modeling. A multi-layer perceptron model was developed (Reddy et al., 2022) for

intrusion detection and prevention. Its multiclassification performance was evaluated on NSL-KDD and wireless sensor

network datasets. Alazab et al. (2023) built an IDS model using DL and the optimization technique used is the Harris

Hawks optimization algorithm, which works by adjusting weight as well as bias sceneries.

Chandrasekar et al. (2023) proposed an ML classifier to predict heart diseases. It employs deep neural networks and

convolution networks, and the data was collected from various sources and fed to public healthcare datasets. A DNN was

used for feature selection, and fifteen convolution layers were used for prediction, achieving an accuracy of 95.46%.

Smmarwar et al. (2021) proposed a malware signature detection framework to identify data behavior from byte-level

or assembly-level data by converting them into visual format and then classifying using a novel triple-fused CNN, which

identifies outliers that represent abnormal patterns in the data. The proposed framework achieved an accuracy of 98% on

the Microsoft Malware dataset. Ghani et al. (2023) proposed a DL intrusion-detection framework based on a feedforward

neural network, which was evaluated over a small feature set on UNSW-NB15 and NSL-KDD datasets.

Another deep-learning classification framework was proposed by Aljuaid et al. (2024). The feature selection was

performed in the first stage, the classification of the dataset was performed using a CNN as the base classifier, and analysis

was performed over the cloud computing domain. The Pearson correlation coefficient was used for feature selection and

optimization. Farhan et al. (2020) proposed a deep-learning-based classifier where data was preprocessed using binary

particle swarm optimization before classification.

 A cloud-based intrusion detection model was proposed by Attou et al. (2023). A random forest classifier was used for

feature selection and classification owing to the complex nature of the cloud environment; the model achieved good

accuracy. Jun-Ho Park et al. (2024) used time series data collected from the vibration of a blower motor—used in industry

to maintain operational efficiency and maintenance regularization—to detect faults. They used ML classifiers in the first

phase and an extreme gradient-boosting algorithm in the second phase.

Chen et al. (2023) proposed a fusion graph convolution network to detect faults in sensors used in wireless sensor

networks. The sensors got faulty due to their hardware, complex working environments, or other attributes. The graph

convolution network was merged with the ant colony optimization to predict faulty sensors in wireless sensor networks and

enhance their durability and stability.

A hybrid classifier (Qazi et al., 2023) that combines RNN and CNN was proposed. Its efficiency was calculated on a

network's real-time traffic. A 1D CNN layer was used as a feature selector, followed by a CNN-deep-learning classifier

layer, and four RNN layers were applied to the data. The model works well with data with spatial and temporal

dependencies. The four layers help improve efficiency, as demonstrated by the performance evaluation metrics. The overall

objective was to find the best parameters to improve the learning efficiency of the classifier, minimizing the error ratio. In

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

71

our proposed study, the deep CNN (DCNN) fusion was done on the bidirectional GRU (i.e., a specification of RNN to

increase efficiency). Table 1 shows the comparison of our proposed work with multiple techniques in the literature.

Table 1. Summary of Significant Related Studies on Intrusion Detection Frameworks

Paper
Learning

Algorithms
Dataset

Feature Selection/

Optimization
Model Description

Accuracy

Classification

Smmarwar

et al.

(2022a)

OEL-AMD CICInvesAnd

Mal2019

Binary Grey Wolf

Optimization

Optimized Ensemble

Learning-based Android

malware detection and

classification model

96.95%(M) and

83.49%(B)

Ghani et al.

(2023)

Feed Forward

neural network

classifiers

UNSW-NB15 and

NSL-KDD

the small feature

vector is being

selected to evaluate

the performance

A machine learning-based

Feedforward neural

network classifier is being

used

90.11%(B) and

91.21%(B)

Aljuaid et

al. (2024)

CNN CSE-CICIDS2018 Pearson correlation

coefficient matrix

heatmap

A Deep Learning Intrusion

detection system for

covering cyber-attacks in

the cloud computing

domain

98.67%(M)

Farhan et al.

(2020)

DNN CICIDS2018 binary particle

swarm optimization

(BPSO)

An Optimized Deep

Learning Based

Framework for Intrusion

Detection

95%(B)

Ahmed et

al. (2023)

Hybrid CNN-

LSTM

NSL-KDD CNN (Conv1D) A Hybrid classifier based

on Deep Learning by

combining CNN and

LSTM

99.20%(M)

Smmarwar

et al.

(2022b)

RF, Decision

Tree, SVM RBF

CIC-

InvesAndMal2019

dataset

Wrapping feature

selection by

combining

GreedySW and

Random Forest

The performance of

multiple ML-based

frameworks has been

evaluated on the reduced

feature and optimized

dataset

91.80% (SVM

RBF) achieves the

highest accuracy

Qazi et al.

(2023)

Hybrid RNN and

CNN

CICID2018 CNN Feature

extractor layer

A Hybrid Deep Learning

base NIDS framework

98.90%(M)

Smmarwar

et al.

(2023a)

Hybrid CNN-

LSTM

IoT malware,

Microsoft BIG-2015,

and Malimg

Double-Density

Discrete Wavelet

Transform (D3WT)

IoT-based IDS for cyber

threats that is AI

empowered

96.97%, 99.98%,

99.96% (Accuracy

achieved for

datasets)

Attou et al.

(2023)

Random Forest

(RF)

NSL-KDD, Bot-IoT graphic data

visualization &RF

feature selection

A Cloud-Based Intrusion

detection and prevention

framework

98.3% and 98.99%

(for the datasets)

Smmarwar

et al.

(2022c)

Light weight

CNN

IoT malware,

Mailing

Discrete Wavelet

Transform (DWT)

Three-phase deep

Learning framework for

bug detection in smart

Agriculture system based

on IoT

99% accuracy

achieved for

datasets

Grace et al.

(2022)

Hybrid LSTM-

SVM

CIC-AndMal-2017

dataset

Aquila optimizer

has been used for

the feature

optimization

A hybrid Intrusion

detection framework has

been proposed to identify

malicious patterns

97% accuracy

achieved for

datasets

Albakri et

al. (2023)

Adamax

optimizer with

attention

Andro-AutoPsy Rock Hyrax Swarm

Optimization-based

feature subset

The proposed framework

works on the principle of

deep learning for the

99.05% accuracy

achieved for

datasets

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

72

Paper
Learning

Algorithms
Dataset

Feature Selection/

Optimization
Model Description

Accuracy

Classification

recurrent

autoencoder

(ARAE)

selection classification of cyber

security and malware

detection attempts

4. BACKGROUND OF THE MODELS

4.1 CNN-based IDS

The main objective of CNNs is to determine the relevant characteristics of the incoming stream of data. The simple

representation of a CNN model used as a simulated model for comparison is shown in Figure 2. Multiple learnable filters

are applied to a layer that consists of multiple feature extractors, which make up the first layers. The filters use the principle

of sliding windows, which have been applied to each incoming data flow point. The output is denoted as feature maps, and

the overlying distance is called the stride. Each CNN layer can be considered as a collection of convolutional kernels,

which are used to create multiple feature maps. An individual neuron in the feature map of the succeeding layer is

associated with the adjacent neuron regions. To build the feature map using CNN, the kernel is made available across

complete spatial locations of the provided input and once the polling and convolution layer are set up, single or multiple

fully connected layers will be used to complete the classification task.

Figure 2. CNN Model Flow

The convolution layer is the key building block of the convolutional network used for feature extraction. The

convolution layers perform both linear and nonlinear operations, that is, a convolution operation as well as an activation

function (Yamashita et al. 2018). Additionally, convolution operations apply filters (or kernels) to protect the spatial

relationship between pixels using learned features.

4.2 RNN-based IDS

RNNs are classified as recurrent because they complete the same task of an element in a sequence with the output that has

been obtained by previous calculations. The RNN information flow and functioning are bidirectional; further, the next

iteration of the input is reprocessed from the RNN network output. A feedforward RNN network is a combined unit of an

input layer, a few intermediate hidden layers, and an output layer. The weight matrix is applied to the input, and applying

the activation function to the derived result generates the output of a simple RNN network node.

A simple representation of GRU can be seen in Figure 3. In the RNN network (Nikolov et al., 2018), a

backpropagation algorithm is used for network training. This requires calculating gradients for every weight in the neural

network and adjusting each weight value such that the required output can be obtained. In our study, base learners (base

classifiers) are the major building blocks of the hybrid framework, which leverages the capability of individual classifiers

into one major hybrid classifier with great capabilities.

GRUs are a form of RNNs commonly denoted as GRU networks. Both types of RNN (GRU and LSTM) are similar in

function and classification procedures; they both have nearly similar architectures, and GRUs work in a similar way as

LSTMs, performing sequential or linear data modeling in a such a way that the information is stored as per some retention

threshold and recalled over the time and will be forgotten after some time. GRU offers a simple structure compared with

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

73

LSTM, which makes it easier to train with greater computational efficiency using fewer parameters and resources. LSTM

saves the long-term dependencies among data, which helps improve predictions. The data is saved using vectors called

memory cell state and hidden state: the memory cell state contains information that is retained for a longer duration,

whereas the hidden state provides information at the current time step for making predictions that will be further sent to the

next timestamp steps. LSTM uses three gates, while GRU architecture uses two gates.

Figure 3. Gated Recurrent Unit

4.3 GRU Architecture

Every GRU cell consists of a reset gate and an update gate. A hidden cell-state concept is used in GRU instead of a separate

cell state used in LSTM. A hidden cell state at timestamp ‘t’ is denoted as ht.

The overall information flow in a cell is regulated using a reset gate and update gate, which also helps address the

problem of vanishing gradients faced by traditional RNNs. The reset gates in GRU cells evaluate the information carried

that is not useful and discard it or not consider it. This is done by either examining the previous hidden state vector and

deciding the part to ignore or to reset again. The update gate is responsible for identifying new information vectors to be

considered or to be retained from the previous hidden state vector. At timestamp ‘t’, we have four major components that

impact the working of the GRU cell: the reset gate, update gate, previously hidden state vectors, candidate or new hidden

state vectors, and the input data provided at every timestamp.

(a)

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

74

(b)

Figure 4. The internal architecture of a GRU cell; (a) GRU Cell; (b) BiGRU Single Layer

Figure 4 shows the internal architecture of a GRU cell: how the vectors flow and are added and multiplied to calculate

new variables to perform reset and update operations at every timestamp.

To evaluate the information flow of the above GRU cell, the equation below represents the overall working of a single

cell unit.

i. Reset Gate: The reset gate component is responsible for evaluating the previous information that is not necessary to be

carried further for the next timestamps and to be discarded or forgotten. At timestamp t, the calculation done by the reset

gate can be evaluated as below.

𝑅𝑡 = 𝜎 (𝑊𝑟 ∙ [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑟) (1)

where

𝑅𝑡 : The reset gate vector at timestamp t, 𝑥𝑡 is the input variable.

𝑊𝑟 : The learning weighted matrix vector maintained at a timestamp by reset gate.

[ℎ𝑡−1 , 𝑥𝑡] : The mathematical expression used to represent the concatenation between the current input 𝑥𝑡 and the

received previous hidden state vector ℎ𝑡−1 , which is why the time stamp is being represented by the

notation t-1 (it is showing the previous timestamp value).

𝑏𝑟 : The bias component used by the reset gate to adjust values accordingly.

𝑊𝑟 . [ℎ𝑡−1 , 𝑥𝑡] : The dot product of reset gate weighted vectors and the previous hidden state.

𝜎 : The sigmoid function used as an activation function whose value fluctuates in the range of 0–1.

ii. Update Gate: The update gate component is responsible for identifying the important previous hidden state information

from past timestamps to be retained, and the new information from the current timestamp is to be incorporated. It carries

past meaningful information and updates important information in place of less meaningful data.

𝑍𝑡 = 𝜎 (𝑊𝑧 ∙ [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑧) , (2)

where

𝑍𝑡 : The update gate vector at timestamp t, 𝑥𝑡 is the input variable.

𝑊𝑍 : The learning weighted matrix vector maintained at a timestamp by the update gate.

[ℎ𝑡−1 , 𝑥𝑡] : The mathematical expression used to represent the concatenation performed between the current input 𝑥𝑡

and the received previous hidden state vector ℎ𝑡−1.

𝑏𝑧 : The bias component used by the update gate to adjust values accordingly.

𝑊𝑧 . [ℎ𝑡−1 , 𝑥𝑡] : The dot product of update gate weighted vectors and the previous hidden state; 𝜎 is the sigmoid function

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

75

iii. Candidate hidden state: It is calculated by finding the new capable hidden state vector ℎ�̅� . A reset gate is used to

examine the values to forget from the previous hidden state.

ℎ�̅� = 𝐭𝐚𝐧𝐡 (𝑊ℎ ∙ [𝑟𝑡 ⊙ ℎ𝑡−1 , 𝑥𝑡] + 𝑏ℎ) (3)

where

tanh : The hyperbolic tangent activation function.

𝑟𝑡 ⊙ ℎ𝑡−1 : The element-wise multiplication of the reset gate and previous hidden state; ⊙ represents the Hadamard

product.

𝑊ℎ : The learning weighted matrix vector maintained at a timestamp by the candidate's hidden state.

𝑏ℎ : The bias component used by the candidate's hidden state to adjust values accordingly.

iv. Final hidden state: It is denoted as a vector ℎ𝑡 . The update gate is used to examine the values; it is a combination of the

previous hidden state vector ℎ𝑡−1 and candidate hidden state vectors ℎ�̅� .

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ�̅� (4)

where

tanh : The hyperbolic tangent activation function

𝑧𝑡 ⊙ ℎ𝑡−1 : The element-wise multiplication of the update gate and previous hidden state; ⊙ is the Hadamard

product, which shows all hidden states to be retained as per the update gate.

(1 − 𝑧𝑡) ⊙ ℎ�̅� : The hidden state of the candidate.

The GRU architecture consists of the following components:

i. Input layer: This layer acts as an interface to input the data to be evaluated or processed.

ii. Hidden layer: It is responsible for recurrent operations. At the current timestamp, the new hidden state is

evaluated using the input data and the previous hidden state. The hidden state is the memory component of RNN

cells.

iii. Reset gate: It is responsible for eliminating or forgetting less meaningful hidden state variables. It performs

calculations on the current input and previous hidden state and generates the vectors in the range of 0–1. It

controls the degree to which the previous hidden state vectors reset a current timestamp.

iv. Update gate: It finds the candidate activation vectors in the range of 0–1 that need to be incorporated into the

new hidden state. Its mathematical notation can be seen in Equation 2.

v. Candidate activation vector: It is the combination of the current timestamp input and the reset version of the

previous hidden state. The tanh activation function is used for the calculation (Equation 3).

vi. Output layer: The final hidden state vectors evaluated can be in the output layer, as mathematically represented

by Equation 4.

Now consider 𝑦�̅� as the prediction output of the model, and the actual output is 𝑦𝑡 . Then, the error can be calculated

using the formula below at timestamp ‘t’:

 𝐸𝑡 = - 𝑦𝑡 log(𝑦�̅�) (5)

The total error summation is calculated for all timestamps 𝐸𝑡 = ∑ 𝐸𝑡𝑡 , 𝐸𝑡 = ∑ 𝑡 − 𝑦𝑡 log (𝑦�̅�)

The summation of gradients for all timestamps is calculated by the formula.

𝜕𝐸

𝜕𝑊
= ∑

𝑡

𝜕𝐸𝑡

𝜕𝑊
 (6)

Using the Chain rule. 𝑦�̅� can be calculated as a function based on ℎ𝑡 and in parallel; ℎ𝑡 is calculated based on ℎ�̅�. On

the above basis, the chain relationship can be expressed as below.

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

76

𝜕𝐸𝑡

𝜕𝑊
=

𝜕𝐸𝑡

 𝜕𝑦�̅�

𝜕𝑦�̅�

 𝜕ℎ𝑡

𝜕ℎ𝑡

 𝜕ℎ𝑡−1

𝜕ℎ𝑡−1

𝜕ℎ𝑡−2
… … … … … …

𝜕ℎ0

𝜕𝑊
 (7)

The total error observed due to gradients can be calculated by the summation of differential vectors:

𝜕𝐸𝑡

𝜕𝑊
= ∑

𝜕𝐸𝑡

 𝜕𝑦�̅�

𝜕𝑦�̅�

 𝜕ℎ𝑡

𝜕ℎ𝑡

 𝜕ℎ𝑡−1

𝜕ℎ𝑡−1

𝜕ℎ𝑡−2
… … … … … …

𝜕ℎ0

𝜕𝑊
 (8)

Now, putting the value of ℎ𝑡 final hidden state vector from Equation 4 in the chain of derivative expression
𝜕ℎ𝑡

 𝜕ℎ𝑡−1
 , the total

gradient loss due to the hidden state will be calculated as below.

𝜕ℎ𝑡

 𝜕ℎ𝑡−1
 = 𝑧 + (1 − 𝑧)

𝜕ℎ�̅�

 𝜕ℎ𝑡−1
 (9)

Substituting the expression of ℎ�̅� hidden state vector from 𝐸quation 3 in the expression
𝜕ℎ𝑡̅̅ ̅

 𝜕ℎ𝑡−1
 , the total gradient loss

error for the final state will be calculated as below.

𝜕ℎ𝑡̅̅ ̅

 𝜕ℎ𝑡−1
 =

𝜕 𝒕𝒂𝒏𝒉 (𝑊ℎ∙ [𝑟𝑡 ⊙ ℎ𝑡−1 ,𝑥𝑡]+𝑏ℎ)

 𝜕ℎ𝑡−1
 (10)

Now Equations 3 and 4 will be kept on the above variables to minimize the gradient descent loss. The sigmoid

function is used in the GRU cell by both the reset and update gates; thus, it can either take a value of 0 or 1. Now consider

the conditions below per reset gate (r) and update gate vector (z):

Condition 1: if z=1, then irrespective of the value of r, the expression
𝜕ℎ𝑡̅̅ ̅

 𝜕ℎ𝑡−1
 , will evaluate to be z only when I equal 1.

Condition 2: (r=0,z=0) when both sigmoidal values are 0, then the expression
𝜕ℎ𝑡̅̅ ̅

 𝜕ℎ𝑡−1
 evaluate𝑠 to 0.

Condition 3: (z=0, r=1), the value evaluates to close to 1; in this way, the vanishing gradient will be addressed such

that it will be prevented from being negligible in the threshold.

This study focuses on building a hybrid framework for intrusion detection to be applied to datasets, training of

models, and validation of accuracy. The loss incurred is calculated, and the proposed model is compared with other ML

models. Many studies provide solutions based on various ML models; however, very few employ the concept of a hybrid

classifier in intrusion detection. In our study, we used commonly used datasets. This study advances our knowledge of

network intrusion detection and offers valuable data for the creation of DL models for IDSs in the future.

5. PROPOSED METHOD

We used a hybrid model composed of CNN, DNN, and BiGRU, individual classifiers with different scopes and domains of

classification tasks. Our model is highly influenced by the hybrid combination of classifiers, that is, CNN-BiLSTM (LSTM

is a form of RNN). Thus, we propose an approach for IDS by developing a hybrid framework, assembling a CNN layer

with a more dense form using DNN layers followed by CNN layers (i.e., DCNN). The two major blocks, DCNN and

BiGRU, were merged. Therefore, the hybrid model was composed of CNN (for feature enforcement) BiGRU layers,

followed by DNN layers (to reduce the error and loss incurred). The setup was run on Python 3.8. The efficiency and

results were compared with those of other methods. In addition to the proposed hybrid model, we mutated and calculated

the efficiency of individual classifiers—CNN, DNN, the autoencoder (AE), and the decoder. The proposed model achieved

the best accuracy, as shown in Table 8. The overall study consisted of the following steps.

a) Selecting the dataset for the study.

b) Transforming and preprocessing the data.

c) Finding the scope of improvement.

d) Selecting the suitable ML models for evaluation on the dataset.

e) Calculating the metrics and comparing them with the metrics of other ML classifiers.

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

77

5.1 Preprocessing

To build an intrusion-detection model, we performed a hybrid merger by combining CNN, bidirectional GRU, and DNN

(i.e., DCNN-BiGRU). We preprocessed, cleaned, and transformed the data before applying classification models to the

dataset. Most classifiers show performance improvement if the data are preprocessed. Data preprocessing helps to maintain

the integrity of data by removing null values, duplicate records, irrelevant attributes, dirty data, and so on.

Artificial neural networks (ANNs) were trained on high-dimensional data from previous statistics of fraudulent

detection to predict the possibility of data or information breaches in existing systems, and if any, the system automatically

stops all the data or information flows without losing information. We discuss IDSs implemented through DL algorithms,

the parameters on which DL procedures work, and how they will prevent cyber intelligence systems from getting breached.

Networks generate massive amounts of data, which requires preprocessing to remove noise, handle missing values,

and normalize the data. Techniques such as data cleaning, feature scaling, and feature engineering are applied to improve

data format in terms of values. Feature selection is one of the most important steps that helps ML models learn and evaluate

better by removing unnecessary features that are insignificant in the overall evaluation. Many feature-selection algorithms

exist. Dimension-reduction algorithms are used in cases where datasets have huge feature complexity. We first removed

irrelevant features. The benefit of using a hybrid framework of ML classifiers for malicious intent detection in cyber

security is their ability to gain or increase in overall performance, accuracy, and robustness with the combination of

different classifiers. The hybrid framework can better generalize patterns and adapt to evolving attack techniques. In cases

of unbalanced datasets where there are huge variations in the number of records between multiple class labels (attack

types), hybrid frameworks outperform individual classifiers.

5.2 Data Collection and Processing Using One Hot Encoding

We used the CICIDS2019 dataset, the common network dataset that accurately reflects modern-day traffic. By utilizing the

collective wisdom of CNN or correlation analysis, the selection process helps identify the most influential features in the

dataset, contributing to better model accuracy and interpretability. Features with higher importance are considered more

relevant for prediction and are retained, while features with lower importance are dropped. Manual features dropped can

also be performed. Table 3 shows the feature list of the dataset considered for analysis. For preprocessing, the one-hot-

encoding technique was used to help convert the string or categorical attributes into numerical form because the majority of

DL classifiers work on numerical data.

5.3 Dataset

Table 2 presents the total attack labels contained by the dataset. It contains 18 attack classes, and we used the dataset for a

multiclass classification-based scenario. To determine the efficiency of the proposed DCNN-BiGRU algorithm, we split the

dataset into training and testing (validation) sets at a ratio of 75:25 (training: testing).

Our proposed model achieved the best accuracy of all the simulated models owing to the inherent best properties of

all individual classifiers such as DNN, CNN, and AE. Table 2 shows the attributes of the dataset. The hybrid model was

trained on labeled data where both normal and attack instances are included. The training stage consisted of optimizing the

model parameters and determining the best performance setting. After training, the hybrid framework was deployed in real-

time scenarios of networks to detect and respond to attacks. Incoming network traffic and device data were continuously

monitored, and the hybrid model evaluated the data to identify suspicious patterns or anomalies. In the event of an attack

being detected, appropriate actions can be taken, such as blocking malicious traffic or isolating affected devices.

We obtained data from multiple authentic sources. The data contained several intrusions that were simulated in an

intelligence network context. The simulated models were tested on raw TCP/IP network traffic data. Several networks were

bombarded with multiple known attacks in the simulated environment, and all normal and abnormal parameters were saved

in some CSV, Excel, or Notepad files. These files were further considered as the raw datasets for IDS scenarios. The

attributes were stored for a few days, hours, and so on. The simulated environments had two types of data according to their

behavior: normal and abnormal. If the classifier is trained using unbalanced data labels, there is a possibility of getting

variations in classifier precision capability. Some specific class labels have to underfit or overfit data records, and so

accordingly the predictions will be made.

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

78

Table 2. Dataset Used With Label Types in Current Scenario

Used Dataset File specified Label Types(Total Classes) Training & Training size

X_train Shape,Y_train Shape

train_test_split=(75% , 25%)

Total Dataset size

Total Attributes:76

Total Class Label:18

Total records: 431371

CICIDS2019 CICIDS2019 Benign,DrDoS_NTP,TFTP,Syn,UDP,

DrDoS_UDP,UDP-

lag,MSSQL,DrDoS_MSSQL,DrDoS_

DNS,DrDoS_SNMP,LDAP,DrDoS_L

DAP,Portmap,NetBIOS,DrDoS_NetB

IOS,UDPLag,WebDDoS

X_train Shape: (323528, 76)

Y_train Shape: (323528, 18)

X_test Shape: (107843, 76)

Y_test Shape: (107843, 18)

X Shape: (431371, 76)

Y Shape: (431371, 18)

Table 3. Dataset Features Used

Dataset Attributes used (76 Attributes in total after dropping 2 attributes, i.e. Idle_min and class attribute): as

we focus on multiclass classification, we opted “label” attribute after removing the class attribute as both

contain duplicate data from the dataset)

CICIDS2019 index, Protocol, Flow Duration, Total Fwd Packets, Total Backward Packets, Fwd Packets Length Total,

Bwd Packets Length Total, Fwd Packet Length Max, Fwd Packet Length Min, Fwd Packet Length Mean,

Fwd Packet Length Std, Bwd Packet Length Max, Bwd Packet Length Min, Bwd Packet Length Mean,

Bwd Packet Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Std, Flow IAT Max,

Flow IAT Min, Fwd IAT Total, Fwd IAT Mean, Fwd IAT Std, Fwd IAT Max, Fwd IAT Min, Bwd IAT

Total, Bwd IAT Mean, Bwd IAT Std, Bwd IAT Max, Bwd IAT Min, Fwd PSH Flags, Bwd PSH Flags,

Fwd URG Flags, Bwd URG Flags, Fwd Header Length, Bwd Header Length, Fwd Packets/s, Bwd

Packets/s, Packet Length Min, Packet Length Max, Packet Length Mean, Packet Length Std, Packet Length

Variance, FIN Flag Count, SYN Flag Count, RST Flag Count, PSH Flag Count, ACK Flag Count, URG

Flag Count, CWE Flag Count, ECE Flag Count, Down/Up Ratio, Avg Packet Size, Avg Fwd Segment Size,

Avg Bwd Segment Size, Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg

Bytes/Bulk, Bwd Avg Packets/Bulk, Bwd Avg Bulk Rate, Subflow Fwd Packets, Subflow Fwd Bytes,

Subflow Bwd Packets, Subflow Bwd Bytes, Init Fwd Win Bytes, Init Bwd Win Bytes,Fwd Act Data

Packets, Fwd Seg Size Min, Active Mean, Active Std, Active Max, Active Min, Idle Mean, Idle Std, Idle

Max'.

5.4 Data Normalization

Multiple data-normalization methods are available. We used the standard scalar technique to normalize data in the range of

[1, +1] or [0, +1]. The data normalization works in such a way that it normalizes the data as per the nature of DL

procedures. It normalizes the feature values in the range of [1, +1] or [0, +1]. Data Normalization can also be referred to as

a standardization procedure, as it boosts up the classifier efficiency in terms of memory consumption, execution time, and

accuracy.

5.5 Deep Neural Network (DNN) Model

DNN is the type of ANN that can be used to build multiple strong IDS frameworks; DNN may also be mutated by itself and

applied to datasets for attack or class label prediction. We used a DNN model depicted in Figure 5, consisting of the input

layer, hidden layer (128 * 256 * 128 neurons), and rectified linear unit (ReLu) activation function, with a learning rate of

0.0001 and dropout scale of 0.1 (the same for all simulated models below).

A DNN can be modified in terms of the hidden layers it contains; the more hidden layers with more neurons or

processing, the more complexity. DNNs may be used in multiple research in some ways. They take inputs and do more

refined calculations or computations on them and provide results through output layers. DNN is one of the best frameworks

for real-life problems like classification and regression of incoming data through prediction and learning.

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

79

Figure 5. DNN Model Applied with Input, Hidden, and output Layers

Figure 6. Proposed Deep CNN-BiGRU Model

5.6 Convolution Neural Network (CNN)

CNN consists of multiple array units to process data (Albawi et al., 2017). The primary objective of CNN is to extract

features, although by maintaining the sequential data information, CNN produced the best results for some problems like

image recognition. It works by finding spatial data correlations in the input data. Figure 7 shows the simple model for the

CNN information flow that we applied to our dataset as described above. First used, Conv_1D (128) layer, ReLu as an

activation function, Adam as an optimizer, Conv_1D (256) layer, and a dropout rate of 0.1, as depicted in Figure 7.

CNN is applied to visual or image data classification tasks. It consists of three layers: the input layer, the hidden layer,

and the output layer. Data is fed into the network; the output from the layer is obtained by a mechanism called feedforward.

Errors are measured using error functions, such as square error loss function or cross-entropy. The calculation done by error

functions helps identify whether the model is performing well or not. The backpropagation method is deployed between

layers to minimize the loss.

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

80

Figure 7. CNN Model

5.7 Autoencoder (AE)

Autoencoders encode data post-compressing. They follow unsupervised learning. They are a type of ANN or simply

derived from ANNs. They learn and reconstruct data back into its original form from the encoded compressed form. The

compression and successive rebuild phenomena are extremely complicated operations. The input data features or

characteristics are completely autonomous from each other. The goal of an autoencoder (Tschannen et al., 2018) is to learn

how to perform lower-dimensional representation (encoding) of complicated high-dimensional data (.i.e., data dimension

reduction). The AE model of nature (128*64*32*16) was used in our study, as depicted in Figure 8, with the same

parameters.

Figure 8. AE Encoder & Decoder Model Layers Applied

5.8 DCNN-BiGRU

The DCNN-BiGRU architecture is composed of the CNN model, kept as the first layer for the feature selection and

boosting process (Gu et al., 2018). We performed manual removal after BiGRU sequence forecasting or classification to

get a reliable output. The DNN layer was placed at the end to boost the performance by minimizing the loss and error ratio.

We built DCNN-BiGRU by first enclosing CNN layers as the first layer, followed by BiGRU layers, and at last, DNN.

Figure 6 shows the proposed DCNN-BiGRU model, and the steps we used to implement the model are given in the

algorithm.

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

81

5.9. Proposed DCNN-BiGRU Algorithm:

Algorithm: DCNN-BiGRU- Model Training, Validation

Data: Dtrain: The training dataset for the ML models (df), multiple Hybrid learners

Result: A hybrid fusion model, with an Accuracy level applied

Step 1: To select relevant features in nature from the Input set of features that can be denoted as f1,f2…….fn.

Where ‘n’ represents the number of features considered.

Step 2: Divide the Input dataset dfFeatures into training and testing sets.

Step 3: Layered Stack of model ().

Step 4: Apply Convolution1D Layer, where Kernel attributes shape = n, with Input shape (76, 1).

Step 5: Apply the Activation function on the flow: ReLu.

Step 6: Application of BatchNormalization () Layer on Model.

Step 7: Apply Bidirectional GRU Cell Layer to the framework, (Neurons =64).

Step 8: Apply Reshape Layer on the flow, i.e. (input size =128).

Step 9: Apply the Batch Normalization Layer to the model ().

Step 10: Apply Bidirectional GRU Cell Layer to the framework, (Neurons =128).

Step 11: Apply Dropout Layer.

Step 12: Apply Deep Neural Network (DNN) of capacity, Neurons =256,128,16(output Layer).

Step 13: Apply the Activation function on the flow: ReLu.

Step 13: Here Dense (n_classes) for our dataset is 16, Neurons (n_classes) = Neurons16(output Layer).

Step14: Apply the Activation function on the flow: Softmax

The first layer (CNN) is boosted and activated using the ReLu activation function as in the equation is below. The

equations for Softmax activation and batch normalization procedure are also given below.

Relu (K) = maximum (0, k)

BatchNormalization (k) =
(𝑘−𝑀𝑖𝑛)

(𝑀𝑎𝑥−𝑀𝑖𝑛)

Softmax (Input K) =
exp (𝐾𝑖)

∑exp (𝐾𝑖)

Below are some parameters used in the proposed algorithm. The optimizer function used was Adam, with a learning

rate of 0.0001, used for all the models—DNN, AE, CNN, and DCNN-BiGRU. We also employed the ReLu activation for

multiclass classification, Softmax activation, one hot encoding, and categorical entropy loss function.

5.9. Proposed DCNN-BiGRU Algorithm Step-7 Detailed Illustration

The computation steps are shown below. The update gate component is responsible for identifying the previous hidden state

information that is important and to be retained from past timestamps and the new information from current timestamps to

be incorporated. It conveys past meaningful information and updates important information in place of less meaningful

data.

• The mathematical computations for the update gate, z = σ (Wz⋅xt+Uz⋅h(t−1)+bz), can be evaluated using Equation 2.

• The reset gate component is responsible for evaluating whether the previous information is necessary to be carried

further for the next timestamps or must be discarded. At timestamp t, the reset-gate calculation can be evaluated as

below.

• r = σ (Wr ⋅ xt + Ur ⋅ h(t−1) + br), which can be evaluated using Equation 1.

• The intermediate memory component, h~ = tanh (Wh ⋅ xt + r ∗ Uh ⋅ h (t−1) + bz), can be evaluated using Equation 3.

• The output layer takes the final hidden state as input and produces the network output. This could be a single number,

a sequence of numbers, or a probability distribution over classes, depending on the task at hand.

• Output h = z ∗ h (t−1) + (1−z) ∗ h~, which can be evaluated using Equation 4.

• In Figure 9, 𝑥𝑡 represents the sequential input data with a dimension (Dim) of S * B *V, where ‘S’ is the sequence

length, ‘B’ is the batch size, and ‘V’ is the number of inputs during a single iteration.

• 𝑟𝑡 is the reset gate unit in the GRU cell, and 𝑧𝑡 is the update gate; the calculation equation is described above and in

Section 4.

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

82

The two more major components used in every GRU cell are candidate hidden state ℎ�̅� and final hidden state ℎ𝑡

denoted at any current timestamp. The reset gate determines the values from the previous hidden state to further forget. The

update gate determines the values from the hidden and candidate hidden states to be considered further.

The legends in the above step represent the element-wise multiplication and addition between the learning weighted

matrix at a time stamp between multiple components, 𝑊𝑧 is the weighted learning matrix for the update gate, 𝑊𝑟 is the

weighted learning matrix of reset gate and 𝑊ℎ is a weighted learning matrix for the candidate's hidden state.

𝑟𝑡 ⊙ ℎ𝑡−1 represents the element-wise multiplication of the reset gate and previous hidden state, and the notation ⊙

represents the Hadamard product.

𝑧𝑡 ⊙ ℎ𝑡−1 represents the element-wise multiplication of the update gate and previous hidden state; it shows all the

hidden states to be retained as per the update gate.

Figure 9. GRU Cell Architecture

6. RESULT ANALYSIS AND DISCUSSION

We briefly analyze the metrics obtained by the IDS classifiers, comparing CNN, DNN, AE (conventional models), and the

proposed framework (DCNN-BiGRU). Convolution networks have convolution layers as the basic building blocks. They

are widely adopted to select distinct features. They are modeled after the concept of biological neurons, where

characteristics from the previous layer of convolution are used in high-level feature abstraction. Numerous artificial

neurons work in various layers to compute the weighted factor and perform its sum at the input and output of activation.

After the CNN layer is the BiGRU layer, which performs well in cases that require quick learning and adapting to new

inputs. GRU performs well by saving short-term dependencies in the data and the DNN layer reduces the error and loss.

The accuracy-evaluation experiments were performed using several ML methods to assess the performance of our proposed

model. We used 431371 samples, 18 class labels, and 78 attributes from the cicddos2019 dataset from Mendeley, out of

which we removed 2 attributes. We manually eliminated features owing to duplicity and irrelevancy. Table 3 represents the

attribute names considered for analysis, and Table 2 shows the label types in the dataset. Table 5 shows the percentage

distribution of records in data classwise. It can be observed that the data distribution is uneven. Table 6 shows the

performance evaluation of the proposed model compared with that of other studies.

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

83

One of the problems faced with the available datasets in network analysis or IoT analysis is the distribution of class

labels for attacks in terms of tuples in CSV files or text files; the distribution of data among various class labels is uneven,

which compromises the model training and testing. If we want the classifier to have good prediction capability and

accuracy for the class attack labels, then we cannot compromise in terms of the provided records in the datasets because, for

any specific class, fewer records or tuples result in training issues in terms of performance. If the classifier is trained on

small amounts of data for class labels and expectations are high, then it cannot be guaranteed to perform well and give good

precision and f1 scores. We proceed with the current distribution; however, we can use techniques like SMOTE to remove

the class label imbalance ratios when required.

We compared the performance in terms of accuracy and the loss rate between DNN, CNN, AE, and DCNN-BiGRU

techniques. The models were trained and validated on datasets on GPU environments or simply platforms that show a

decrease in the training duration as shown in Table 8 for model performance description for the cicddos2019 dataset. Table

7 shows the model description and hyperparameter tuning for all four algorithms used on the cicddos2019 dataset. Table 4

shows the metric calculation base, and Figures 10 to 13 show the confusion matrix of all the classifiers. Our proposed

model gives a higher accuracy of 99.70 % in multiclass classification. Figures 14 to 17 show the training, validation,

accuracy, and loss incurred by all the algorithms. The efficiency of the IDS algorithm depends on multiple parameters like

dataset features selected, the learning rate activation function, and so on. Developing an ideal classifier is an interesting

field of research. Thus, it will not be justified to say the proposed model is the best fit for every dataset.

6.1 Confusion Matrix (CM)

The confusion matrix is used to show the correlation between the actual and expected class. It is also helpful in estimating

AUC and ROC curves, specificity, precision, recall, and accuracy. Table 4 shows the confusion matrix.

Table 4. Confusion Matrix (CM)

Class Actual Positive Class Actual Negative Class

Predicted Positive Class TP FP

Predicted Negative Class FN TN

i. Accuracy

The percentage of instances that are correctly classified is calculated as follows:

Accuracy =
TP+TN

(TP+TN+FP+FN)

Table 5. Percentage Classwise Distribution of Records on Cicddos2019 Dataset

Traffic Type Class Name Instances Percentage

Normal Benign 97381 22.679

Abnormal DrDoS_NTP 121368 28.135

Abnormal TFTP 98917 22.931

Abnormal Syn 49373 11.446

Abnormal UDP 18090 4.194

Abnormal DrDoS_UDP 10420 2.416

Abnormal UDP-lag 8872 2.057

Abnormal MSSQL 8523 1.976

Abnormal DrDoS_MSSQL 6212 1.44

Abnormal DrDoS_DNS 3669 0.851

Abnormal DrDoS_SNMP 2717 0.63

Abnormal LDAP 1906 0.442

Abnormal DrDoS_LDAP 1440 0.334

Abnormal Portmap 685 0.159

Abnormal NetBIOS 644 0.149

Abnormal DrDoS_NetBIOS 598 0.139

Abnormal UDPLag 55 0.013

Abnormal WebDDoS 51 0.012

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

84

If datasets face class label imbalance, multiple algorithms work for the input datasets and help remove the class label

imbalance ratios, and we can fit the SMOTE function as per need. We can directly apply the algorithm function on the

complete dataset in a way that automatically adjusts the data records classwise, either by replication or generation of more

records for the underfit class label. We can also specify the value in terms of integer up to which we want the class label

records to be scaled or increased.

Figure 10. DNN Confusion Matrix

ii) Error Rate

The percentage of predicted values that are incorrectly categorized is determined as follows:

Error rate = 1- Accuracy

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

85

Figure 11. CNN Confusion Matrix

Figure 12. Auto Encoder Confusion Matrix

Figure 13. DCNN-BiGRU: Hybrid Confusion Matrix

Table 6. Performance Evaluation of the Proposed Model and Those of Other Studies

Paper Model Dataset Accuracy Loss Inference Time

Reddy et al. (2022) MLP NSL-KDD, wireless

sensor networks

98 %(M) 0.0198 13.25 seconds

Alazab et al. (2024) HHO-MLP KDD Datasets 93.17(M) * *

AL-Hawawreh et al.

(2018)

ADS NSL-KDD and UNSW-

NB15

92.40%(M) and

98.60%(M)

8.2, 1.8 5.50 seconds,2.25

seconds

Halbouni et al. (2022) CNN-LSTM CIC-IDS 2017, UNSW- 99.59%(B), * 763 seconds, 244

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

86

Paper Model Dataset Accuracy Loss Inference Time

Hybrid NB15, WSN-DS 93.68%(B),

99.61%(B)

sec, 112 sec

Altunay et al. (2022) CNN+LSTM UNSW-NB15, X-

IIoTID

93.21%(B),

92.9% (M)(both

for UNSW-

NB15) &

99.84% (B),

99.80%(M) for

IIoTID

6.21%(B),

6.28%(M)

(UNSB-NB15) &

0.12%(B),

0.12%(M) for

IIoTID

*

Sun et al. (2020) CNN-LSTM

Hybrid

CICIDS207 99.50%[M] * *

Popoola et al. (2021) LAE-BLSTM BOT-IOT 91.80%(M) * 0.2359sec

Zhai et al. (2023) CNN–GRU NSL-KDD 78.79% * *

De La Torre Parra et

al. (2020)

DCNN LssSTM Version N_BaIoT 94.80% (B)

94.20% (M)

* *

Proposed study DCNN-BiGRU cicddos2019 0.9970(M) 0.0123 39.38 seconds

* represents: Not available, M: multiclassification of class label, B: binary label classification

Figure 14. DNN Training, Validation, Accuracy, Loss

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

87

Figure 15. CNN Training, Validation, Accuracy, Loss

Figure 16. AE Training, Validation, Accuracy, Loss

Figure 17. DCNN-BiGRU Training, Validation, Accuracy, Loss

Table 7. Model Description With Hyperparameter Tuning Used on the Cicddos2019 Dataset

Model

Name(Dynamic)

Model Description

Layer Architecture Dropout Loss entropy
Learning

Rate
Platform Activation Epochs

Batch

Size

DNN(Dense

Neural Network)

Dense(128 * 256 * 128) 0.1 BinaryCrossentropy 0.0001 GPU ReLu/softmax 30 128

CNN Convolution1D(128)

Convolution1D(256)

Dense(256) * Dense(18)

0.1 categorical_crossentropy 0.0001 GPU ReLu/softmax 30 128

Auto

Encoder/decoder

Dense(128 * 64 *32

*16)(16*32*64*128)

0.1 Mae 0.0001 GPU elu 30 128

DCNN-BiGRU Convolution1D(128) *

BiGRU(64) * BiGRU (128) *

Dense(256)*Dense (128)*Dense

(n_classes)

0.1 BinaryCrossentropy 0.0001 GPU ReLu/softmax 30 128

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

88

Table 8. Model Performance Description Used on the Cicddos2019 Dataset

Model Name

Model Performance

Layer Architecture Optimizer Dataset
Inference

Time
Recall Precision

F1

score
Loss Accuracy

ROC-

AUC

DNN(Dense

Neural

Network)

Dense(128 * 256 * 128) Adam cicddos2019 10.36

seconds

0.9947 0.9946 0.9946 0.0018 0.9948 0.9325

CNN Convolution1D(128)*

Dense(256) * Dense(18)

Adam cicddos2019 10.38

seconds

0.9966 0.9966 0.9966 0.0129 0.9967 0.9431

Auto Encoder Dense(128 * 64 *32

*16)(16*32*64*128)

Adam cicddos2019 6.76

seconds

0.9957 0.9957 0.9956 0.0013 0.9958 0.9351

DCNN-

BiGRU

Convolution1D(128) *

BiGRU(64) * BiGRU (128) *

Dense(256)*Dense (128)*Dense

(n_classes)

Adam cicddos2019 39.38

seconds

0.9969 0.9969 0.9969 0.0123 0.9970 0.9615

7. CONCLUSION

Using our proposed model, we analyzed real network traffic of the cicddos2019 dataset and compared the efficiency of

multiple models of a similar type. The proposed hybrid DCNN-BiGRU model outperformed all the other standard

benchmark classifiers of a similar type evaluated in this study. The major objective was to enhance the multiclass

classification accuracy of ML classifiers on the applied datasets, where correct predictions had to be made under multiple

attack labels. The performance of ML classifiers decreases when making multiclass-based predictions. Our proposed model

proved dependable from an accuracy perspective. DCNN-BiGRU architecture leverages the strengths of each model; the

proposed hybrid model can detect abnormal attack patterns in datasets with a higher accuracy percentage than the standard

models. Experimental results show that the proposed DCNN-BiGRU hybrid model outperformed other standard models in

accuracy, with a value of 99.70 %. As DCNN-BiGRU is a hybrid model, it takes advantage of individual learners like CNN

and GRU, outperforming isolated models. The proposed DCNN-BiGRU is an optimized solution from an industry

perspective as it is suitable for network and system administrators to deploy; it requires fewer resources than other

homogeneous models. Although DCNN-BiGRU performed very well on the current dataset, there is always a scope for

improvement in terms of memory and time complexity, which can be improved by using multiple techniques. The

limitations of this study are that the performance may degrade when the data have long-term dependencies The proposed

system has a slightly high training time in comparison to other models, despite being more accurate. A further merger with

other suitable optimization or feature-reduction techniques can improve the achieved accuracy.

Availability of supporting data: Below are the links where datasets are available. The datasets generated and/or analyzed

during the current study are not publicly available owing to [security reasons] but are available from the corresponding

author on reasonable request. Data will be made available on request.

For CIC-DDoS2019 URL: https://data.mendeley.com/datasets/ssnc74xm6r/1

REFERENCES

Ahmed Issa, A. S., & Albayrak, Z. (2023). DDoS attack intrusion detection system based on hybridization of CNN and

LSTM. Acta Polytechnica Hungarica, 20(2), 105–123. DOI: https://doi.org/10.12700/aph.20.2.2023.2.6.

Alazab, M., Abu Khurma, R., Castillo, P. A., Abu-Salih, B., Martín, A., & Camacho, D. (2024). An effective networks

intrusion detection approach based on hybrid Harris Hawks and multi-layer perceptron. Egyptian Informatics Journal,

25(100423), 100423. DOI: https://doi.org/10.1016/j.eij.2023.100423.

Albakri, A., Alhayan, F., Alturki, N., Ahamed, S., & Shamsudheen, S. (2023). Metaheuristics with deep learning model for

cybersecurity and Android malware detection and classification. Applied Sciences (Basel, Switzerland), 13(4), 2172. DOI:

https://doi.org/10.3390/app13042172.

Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017, August). Understanding of a convolutional neural network. 2017

https://data.mendeley.com/datasets/ssnc74xm6r/1
https://doi.org/10.12700/aph.20.2.2023.2.6
https://doi.org/10.1016/j.eij.2023.100423
https://doi.org/10.3390/app13042172

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

89

International Conference on Engineering and Technology (ICET). Presented at the 2017 International Conference on

Engineering and Technology (ICET), Antalya. DOI: https://doi.org/10.1109/icengtechnol.2017.8308186.

Aljuaid, W. H., & Alshamrani, S. S. (2024). A deep learning approach for intrusion detection systems in cloud computing

environments. Applied Sciences (Basel, Switzerland), 14(13), 5381. DOI: https://doi.org/10.3390/app14135381.

Altameem, A. A., & Hafez, A. M. (2022). Behavior analysis using enhanced fuzzy clustering and deep learning.

Electronics, 11(19), 3172. DOI: https://doi.org/10.3390/electronics11193172.

AL-Hawawreh, M., Moustafa, N., & Sitnikova, E. (2018). Identification of malicious activities in industrial internet of

things based on deep learning models. Journal of Information Security and Applications, 41, 1–11. DOI:

https://doi.org/10.1016/j.jisa.2018.05.002.

Altunay, H. C., & Albayrak, Z. (2023). A hybrid CNN+LSTM-based intrusion detection system for industrial IoT

networks. Engineering Science and Technology an International Journal, 38(101322), 101322. DOI:

https://doi.org/10.1016/j.jestch.2022.101322.

Amma, B., & Selvakumar. (2020). Anomaly detection framework for Internet of things traffic using vector convolutional

deep learning approach in fog environment. Future Generations Computer Systems: FGCS, 113, 255–265. DOI:

https://doi.org/10.1016/j.future.2020.07.020.

Attou, H., Guezzaz, A., Benkirane, S., Azrour, M., Farhaoui, Y. (2023). Cloud-Based Intrusion Detection Approach Using

Machine Learning Techniques. Big Data Mining and Analytics, 2023, 6, 311–320.

Bhatt, P., & Morais, A. (2018, December). HADS: Hybrid anomaly detection system for IoT environments. 2018

International Conference on Internet of Things, Embedded Systems and Communications (IINTEC), Hamammet, Tunisia.

DOI: https://doi.org/10.1109/iintec.2018.8695303.

Chandrasekar, S., Subburathinam, K., & Kannan, S. (2023). Analysis for heart disease prediction using deep neural

network and vgg_19 convolution neural network. International Journal of Industrial Engineering: Theory, Applications

and Practice, 30(4). DOI: https://doi.org/10.23055/ijietap.2023.30.2.8603.

Chen, H., & Ren, L. (2023). ACO-GCN: A fault detection fusion algorithm for wireless sensor network nodes.

International Journal of Industrial Engineering: Theory, Applications and Practice, 30(2).

https://doi.org/10.23055/ijietap.2023.30.2.8801.

De La Torre Parra, G., Rad, P., Choo, K.-K. R., & Beebe, N. (2020). Detecting Internet of Things attacks using distributed

deep learning. Journal of Network and Computer Applications, 163(102662), 102662. DOI:

https://doi.org/10.1016/j.jnca.2020.102662.

Farhan, R. I., Maolood, A. T., & Hassan, N. F. (2020). Optimized Deep Learning with Binary PSO for Intrusion Detection

on CSE-CIC-IDS2018 Dataset. Journal of Al-Qadisiyah for Computer Science and Mathematics, 12(3). DOI:

https://doi.org/10.29304/jqcm.2020.12.3.706.

Gao, J. (2022). Network intrusion detection method combining CNN and BiLSTM in Cloud Computing Environment.

Computational Intelligence and Neuroscience, 2022, 7272479. DOI: https://doi.org/10.1155/2022/7272479.

Ghani, H., Virdee, B., & Salekzamankhani, S. (2023). A deep learning approach for network intrusion detection using a

small features vector. Journal of Cybersecurity and Privacy, 3(3), 451–463. DOI: https://doi.org/10.3390/jcp3030023.

Gosain, A., & Dahiya, S. (2016). Performance analysis of various fuzzy clustering algorithms: A review. Procedia

Computer Science, 79, 100–111. DOI: https://doi.org/10.1016/j.procs.2016.03.014.

Grace, M., & Sughasiny, M. (2022). Malware detection for Android application using Aquila optimizer and Hybrid LSTM-

SVM classifier. ICST Transactions on Scalable Information Systems, e1. DOI: https://doi.org/10.4108/eetsis.v9i4.2565.

https://doi.org/10.1109/icengtechnol.2017.8308186
https://doi.org/10.3390/app14135381
https://doi.org/10.3390/electronics11193172
https://doi.org/10.1016/j.jisa.2018.05.002
https://doi.org/10.1016/j.jestch.2022.101322
https://doi.org/10.1016/j.future.2020.07.020
https://doi.org/10.1109/iintec.2018.8695303
https://doi.org/10.23055/ijietap.2023.30.2.8603
https://doi.org/10.23055/ijietap.2023.30.2.8801
https://doi.org/10.1016/j.jnca.2020.102662
https://doi.org/10.29304/jqcm.2020.12.3.706
https://doi.org/10.1155/2022/7272479
https://doi.org/10.3390/jcp3030023
https://doi.org/10.1016/j.procs.2016.03.014
https://doi.org/10.4108/eetsis.v9i4.2565

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

90

Gurung, S., Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, Sikkim, India, Kanti Ghose, M.,

& Subedi, A. (2019). Deep learning approach on network intrusion detection system using NSL-KDD dataset. International

Journal of Computer Network and Information Security, 11(3), 8–14. DOI: https://doi.org/10.5815/ijcnis.2019.03.02.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., … Chen, T. (2018). Recent advances in convolutional neural

networks. Pattern Recognition, 77, 354–377. DOI: https://doi.org/10.1016/j.patcog.2017.10.013.

Halbouni, A., Gunawan, T. S., Habaebi, M. H., Halbouni, M., Kartiwi, M., & Ahmad, R. (2022). CNN-LSTM: Hybrid deep

neural network for network intrusion detection system. IEEE Access: Practical Innovations, Open Solutions, 10, 99837–

99849. DOI: https://doi.org/10.1109/access.2022.3206425.

Jun-Ho Park, & Baek, S. H. (2024). Two-Step Methodology for Statistical Anomaly Detection and Prediction Using

XGBoost Regression in Blower Motor Vibration Time Series Data. International Journal of Industrial Engineering:

Theory, Applications and Practice, 31(4). DOI: https://doi.org/10.23055/ijietap.2024.31.4.9989.

Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion detection systems: techniques,

datasets and challenges. Cybersecurity, 2(1). DOI: https://doi.org/10.1186/s42400-019-0038-7.

Kumar, R., Kumar, P., Tripathi, R., Gupta, G. P., Garg, S., & Hassan, M. M. (2022). A distributed intrusion detection

system to detect DDoS attacks in blockchain-enabled IoT network. Journal of Parallel and Distributed Computing, 164,

55–68. DOI: https://doi.org/10.1016/j.jpdc.2022.01.030.

Mohammadpour, L., Ling, T. C., Liew, C. S., & Aryanfar, A. (2022). A survey of CNN-based network intrusion detection.

Applied Sciences (Basel, Switzerland), 12(16), 8162. DOI: https://doi.org/10.3390/app12168162.

Nikolov, D., Kordev, I., & Stefanova, S. (2018, September). Concept for network intrusion detection system based on

recurrent neural network classifier. 2018 IEEE XXVII International Scientific Conference Electronics - ET. Presented at the

2018 IEEE XXVII International Scientific Conference Electronics (ET), Sozopol. DOI:

https://doi.org/10.1109/et.2018.8549584.

Popoola, S. I., Adebisi, B., Hammoudeh, M., Gui, G., & Gacanin, H. (2021). Hybrid deep learning for botnet attack

detection in the internet-of-things networks. IEEE Internet of Things Journal, 8(6), 4944–4956. DOI:

https://doi.org/10.1109/jiot.2020.3034156.

Qazi, E. U. H., Faheem, M. H., & Zia, T. (2023). HDLNIDS: Hybrid Deep-Learning-Based Network Intrusion Detection

System. Applied Sciences (Basel, Switzerland), 13(8), 4921. DOI: https://doi.org/10.3390/app13084921.

Reddy, G. V., Kadiyala, S., Potluri, C. S., Saravanan, P. S., Athisha, G., Mukunthan, M. A., & Sujaritha, M. (2022). An

intrusion detection using machine learning algorithm Multi-Layer Perceptron (MlP): A classification enhancement in

Wireless Sensor Network (WSN). International Journal on Recent and Innovation Trends in Computing and

Communication, 10(2s), 139–145. DOI: https://doi.org/10.17762/ijritcc.v10i2s.5920.

Roopak, M., Tian, G. Y., & Chambers, J. (2020, January). An intrusion detection system against DDoS attacks in IoT

networks. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). Presented at the 2020

10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA. DOI:

https://doi.org/10.1109/ccwc47524.2020.9031206.

Sarker, I. H. (2021). Deep learning: A comprehensive overview on techniques, taxonomy, applications and research

directions. SN Computer Science, 2(6), 420. DOI: https://doi.org/10.1007/s42979-021-00815-1.

Shamshirband, S., Fathi, M., Dehzangi, A., Chronopoulos, A. T., & Alinejad-Rokny, H. (2021). A review on deep learning

approaches in healthcare systems: Taxonomies, challenges, and open issues. Journal of Biomedical Informatics,

113(103627), 103627. DOI: https://doi.org/10.1016/j.jbi.2020.103627.

Shan, L., Liu, Y., Tang, M., Yang, M., & Bai, X. (2021). CNN-BiLSTM hybrid neural networks with attention mechanism

for well log prediction. Journal of Petroleum Science & Engineering, 205(108838), 108838. DOI:

https://doi.org/10.1016/j.petrol.2021.108838.

https://doi.org/10.5815/ijcnis.2019.03.02
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1109/access.2022.3206425
https://doi.org/10.23055/ijietap.2024.31.4.9989
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1016/j.jpdc.2022.01.030
https://doi.org/10.3390/app12168162
https://doi.org/10.1109/et.2018.8549584
https://doi.org/10.1109/jiot.2020.3034156
https://doi.org/10.3390/app13084921
https://doi.org/10.17762/ijritcc.v10i2s.5920
https://doi.org/10.1109/ccwc47524.2020.9031206
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1016/j.jbi.2020.103627
https://doi.org/10.1016/j.petrol.2021.108838

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

91

Smmarwar, S. K., Gupta, G. P., & Kumar, S. (2021). Design of a fused triple convolutional neural network for malware

detection: A visual classification approach. In Communications in Computer and Information Science. Communications in

Computer and Information Science (pp. 279–289). DOI: https://doi.org/10.1007/978-3-030-81462-5_26.

Smmarwar, S. K., Gupta, G. P., Kumar, S., & Kumar, P. (2022a). An optimized and efficient android malware detection

framework for future sustainable computing. Sustainable Energy Technologies and Assessments, 54(102852), 102852.

DOI: https://doi.org/10.1016/j.seta.2022.102852.

Smmarwar, S. K., Gupta, G. P., & Kumar, S. (2022b). A hybrid feature selection approach-based android malware

detection framework using machine learning techniques. In Lecture Notes in Networks and Systems. Lecture Notes in

Networks and Systems (pp. 347–356). DOI: https://doi.org/10.1007/978-981-16-8664-1_30.

Smmarwar, S. K., Gupta, G. P., & Kumar, S. (2022c). Deep malware detection framework for IoT-based smart agriculture.

Computers & Electrical Engineering: An International Journal, 104(108410), 108410. DOI:

https://doi.org/10.1016/j.compeleceng.2022.108410.

Smmarwar, S. K., Gupta, G. P., & Kumar, S. (2023a). AI-empowered malware detection system for industrial internet of

things. Computers & Electrical Engineering: An International Journal, 108(108731), 108731. DOI:

https://doi.org/10.1016/j.compeleceng.2023.108731.

Smmarwar, S. K., Gupta, G. P., & Kumar, S. (2023b, July 29). XAI-AMD-DL: An explainable AI approach for android

malware detection system using deep learning. 2023 IEEE World Conference on Applied Intelligence and Computing

(AIC). Presented at the 2023 IEEE World Conference on Applied Intelligence and Computing (AIC), Sonbhadra, India.

DOI: https://doi.org/10.1109/aic57670.2023.10263974.

Smmarwar, S. K., Gupta, G. P., & Kumar, S. (2024). Android malware detection and identification frameworks by

leveraging the machine and deep learning techniques: A comprehensive review. Telematics and Informatics Reports,

14(100130), 100130. DOI: https://doi.org/10.1016/j.teler.2024.100130.

Sun, P., Liu, P., Li, Q., Liu, C., Lu, X., Hao, R., & Chen, J. (2020). DL-IDS: Extracting features using CNN-LSTM hybrid

network for intrusion detection system. Security and Communication Networks, 2020, 1–11. DOI:

https://doi.org/10.1155/2020/8890306.

Tschannen, O. Bachem, M. Lucic (2018), Recent advances in autoencoder-based representation learning, Third workshop

Bayesian Deep Learn. (NeurIPS 2018), DOI: https://doi.org/10.48550/arXiv.1812.05069.

Tsogbaatar, E., Bhuyan, M. H., Taenaka, Y., Fall, D., Gonchigsumlaa, K., Elmroth, E., & Kadobayashi, Y. (2021). DeL-

IoT: A deep ensemble learning approach to uncover anomalies in IoT. Internet of Things, 14(100391), 100391. DOI:

https://doi.org/10.1016/j.iot.2021.10ssss0391.

Ullah, I., & Mahmoud, Q. H. (2021). Design and development of a deep learning-based model for anomaly detection in IoT

networks. IEEE Access: Practical Innovations, Open Solutions, 9, 103906–103926. DOI:

https://doi.org/10.1109/access.2021.3094024.

Van Huong, P., Thuan, L. D., Hong Van, L. T., & Hung, D. V. (2019, December). Intrusion detection in IoT systems based

on deep learning using convolutional neural network. 2019 6th NAFOSTED Conference on Information and Computer

Science (NICS). Hanoi, Vietnam. DOI: https://doi.org/10.1109/nics48868.2019.9023871.

Wu, K., Chen, Z., & Li, W. (2018). A novel intrusion detection model for a massive network using convolutional neural

networks. IEEE Access: Practical Innovations, Open Solutions, 6, 50850–50859. DOI:

https://doi.org/10.1109/access.2018.2868993.

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and

application in radiology. Insights into Imaging, 9(4), 611–629. DOI: https://doi.org/10.1007/s13244-018-0639-9.

https://doi.org/10.1007/978-3-030-81462-5_26
https://doi.org/10.1016/j.seta.2022.102852
https://doi.org/10.1007/978-981-16-8664-1_30
https://doi.org/10.1016/j.compeleceng.2022.108410
https://doi.org/10.1016/j.compeleceng.2023.108731
https://doi.org/10.1109/aic57670.2023.10263974
https://doi.org/10.1016/j.teler.2024.100130
https://doi.org/10.1155/2020/8890306
https://doi.org/10.48550/arXiv.1812.05069
https://doi.org/10.1016/j.iot.2021.10ssss0391
https://doi.org/10.1109/access.2021.3094024
https://doi.org/10.1109/nics48868.2019.9023871
https://doi.org/10.1007/s13244-018-0639-9

Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention

92

Zhai, F., Yang, T., Chen, H., He, B., & Li, S. (2023). Intrusion detection method based on CNN–GRU–FL in a smart grid

environment. Electronics, 12(5), 1164. DOI: https://doi.org/10.3390/electronics12051164.

Zhang, J., Zhang, X., Liu, Z., Fu, F., Jiao, Y., & Xu, F. (2023). A network intrusion detection model based on BiLSTM

with multi-head attention mechanism. Electronics, 12(19), 4170. DOI: https://doi.org/10.3390/electronics12194170.

https://doi.org/10.3390/electronics12051164
https://doi.org/10.3390/electronics12194170

