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Advances in networking devices have revolutionized many industries by enabling intercommunication and automation in 

multiple areas, such as healthcare, transportation, and manufacturing. However, the threat of cyber-attacks has also 

escalated with the increased connectivity and dependency on these devices. Cyber security has become critical in protecting 

networks from malicious activities, ensuring the privacy and integrity of the data transmitted. Multiple deep-learning 

methods face multiple challenges in identifying intrusion threats; however, deep learning can self-enhance and scale up for 

reliability. We propose an efficient hybrid deep-learning intrusion-detection classifier, DCNN-BiGRU. The classifier has a 

simple architecture and works well in environments that do not require saving long-term dependencies and where 

computational resources are limited. It achieved a multiclass-classification accuracy of 99.70% on the training and test 

datasets. 
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1. INTRODUCTION 
 

Networks have reached millions of interconnected data-transmission devices or pieces of equipment that convey massive 

quantities of data. They offer a lot of advantages and benefits; however, they are susceptible to increased risk of fraud 

because they can be penetrated, enabling hackers to access information and data communicated through the networks. 

Intrusion detection systems (IDSs) are crucial in detecting, stopping, and preventing breaches in inter-networking networks 

(Khraisat et al., 2019). Traditional intrusion-detection methods fail to effectively detect intrusion over networks (i.e., 

signature-based IDS methods are inefficient in evaluating attack patterns such as signature-based detection) and may not 

sufficiently address the sophisticated and evolving nature of network attacks. Therefore, advanced and efficient IDS models 

are needed (Kumar et al., 2022).  

Efficient intrusion detection techniques are an important requirement for any network IDS (NIDS) to effectively 

detect and prevent anomalies. Most NIDS models use signature-based techniques instead of anomaly-based techniques to 

prevent malicious attempts. Hackers employ new and complex methods; IDSs must be capable of self-learning and self-

predicting to deal with malicious attempts. Thus, IDSs need continuous refinements to offer effective protection. Existing 

IDSs are continuously refined by upgrading and releasing more stable versions. Intrusion detection works on multiple 

paradigms to secure networks against malicious activities, with multiple theories being employed, such as fuzzy-based 

clustering or pattern-recognition techniques (Gosain et al., 2022). Enhanced fuzzy clustering and deep-learning techniques 

(Altameem et al., 2022) have been employed in behavior analysis to develop new frameworks for intrusion detection. 

Neural networks can learn hidden patterns and identify the behavior and relationships that help in prediction. Thus, the 

most advanced and successful frameworks based on artificial intelligence use deep-learning-based classifiers. In related 

studies, deep-learning models performed well over large datasets. However, in some scenarios, feature- or dimension-

reduction techniques also help IDSs improve their efficiency by removing or transforming unusual attributes. Binary 

classification is the paradigm most adopted by multiple traditional IDS techniques to categorize the threat type and pattern. 

High-dimensional data impacts the performance of machine-learning (ML) classifiers by degrading their efficiency and 
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reducing their accuracy. This results in a low attack-detection rate in the training and validation model, which hampers the 

detection capability and performance. 

Traditional intrusion-detection methods are not that capable as they use key-based transmission or other encryption 

and decryption methods to transfer data packets. Some of the most common algorithms are RSA and Diffie hellmen. On the 

other hand, ML techniques have outperformed traditional intrusion-detection methods. This paper explores previous 

research on feature selection in intrusion detection. Dimension-reduction techniques have been used in multiple 

classification scenarios to improve the efficiency of IDSs. 

A model should be capable of selecting reliable features from high-dimensional datasets such that its classification 

accuracy is not affected. Figure 1 and Figure 6 shows the proposed model and how multiple individual classifiers are placed 

in a hybrid classifier framework, together with the order of data processing and flow. To understand the functioning of 

various network intrusion detection frameworks, we review various IDS approaches. Our study is based on convolutional 

neural network and bidirectional long short-term memory CNN-BiLSTM hybrid neural networks with attention mechanism 

(Shan et al., 2021; Gao et al., 2021; Altunay et al., 2023; Zhang et al., 2023), which we enhanced to develop a secure IDS. 

The proposed classifier is known as DCNN-BiGRU. Motivated by the hybrid nature of ML classifiers, we developed a 

framework that can effectively perform well in systems that are based on multiclass classification with higher accuracy. A 

major limitation of multiple classifiers is the decrease in efficiency in multiclass-based classification. In the proposed 

framework, we used a bidirectional variant of recurrent neural networks (RNN), which can save dependency patterns for 

data evaluation with limited resources.  

The contributions of our study are described as follows. 

• We develop a hybrid classifier by combining and blending convolutional neural network (CNN) and 

bidirectional gated recurrent unit (BiGRU) classifier units with dense neural network (DNN) layers to build a 

reliable IDS. 

• The proposed classifier works well in the case where it is not required to save long-term dependencies for 

modeling sequential data, particularly in cases where computational resources are limited and a simple 

architecture is desired using a hybrid-classifier-based approach. It also addresses the gradient vanishing faced by 

traditional RNNs. It has less training time for gated recurrent unit (GRU) cells owing to simple architecture, as 

two gates and a candidate activation vector are used instead of individual memory cell units. 

• The performance of the model is evaluated on a real-time traffic dataset, CICIDS2019, and the results are 

compared with those of other hybrid classifiers. 

Manual intervention to remove less meaningful attributes results in an increase in the efficiency of the model. 

The remainder of this article is structured as follows: Section 2 explains the novelty and contributions of the study. 

Related studies are reviewed in Section 3. Section 4 introduces the background of the models used for our analysis. The 

proposed model is presented in Section 5. Section 6 presents the experimental analyses and comparison with other models 

or classifiers. We evaluate the experimental outcomes and results and also present a comparative study with alternative 

intrusion-detection techniques. Section 7 concludes the paper. 

 

2. MOTIVATION & CONTRIBUTION 

 

(i) BiGRU units can re-iterate themselves using weight and enhance performance. GRU has a simpler architecture than long 

short-term memory (LSTM) cells as it performs calculations using only two gates (i.e., reset gate and update gate), whereas 

LSTM cells use three gates for calculations. Consequently, GRU cells require less computational resources and training 

time, making them computationally effective and simple. 

 

(ii) GRU is a form of RNN; it effectively handles the vanishing gradient problem faced by traditional RNNs. In the 

calculations that require simple architectures, GRU is a good alternative to LSTM networks. GRU uses a single gate to 

control information flow in contrast to the three used by LSTM, which makes it faster to train and execute. However, GRU 

cannot save and analyze long-term dependencies; it may perform well in cases that require quick learning and adapting to 

new inputs and not in scenarios where networks require saving long-term dependencies. GRU. LSTM and GRU are types 

of RNN; they save information from previous inputs, which helps utilize dependencies and context observed between time 

steps. 

 

(iii) GRU is used to resolve the problems that arise due to vanishing gradient (i.e., conditions when the weight threshold 

becomes so negligible, impacting network learning capability) in simple RNNs. GRU cells contain memory components 

capable of remembering information for longer periods. This is achieved using gates that control the flow of information in 

and out of a cell. The sigmoid activation function controls these gates using values that range from 0 to 1. The gates can 
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enrich the model by allowing it to selectively store or forget the information as per the input information and the previous 

cell state. 

 

 
 

Figure 1. DCNN-BiGRU Hybrid Approach 

 

We blend the DCNN-BiGRU model in a hybrid manner to inherit the properties of the best classifier network. The 

model is suitable for multiclass label scenarios and can adjust, enhance, and scale up. It is a dense form of CNN (i.e., 

DCNN) merged with BiGRU with minimized metrics that replicate in performance enrichment. 

 

3. RELATED STUDIES 

 

We propose a hybrid framework that merges the capabilities of multiple ML algorithms to create an accurate and precise 

network intrusion detection system. The proposed model leverages the strengths of individual algorithms to achieve an 

enhanced detection performance. The framework consists of three major steps: preprocessing the given data, selecting 

features of the required attributes, and training the hybrid algorithm. The deep-learning mechanism plays a very crucial role 

in identifying patterns in complex, emerging datasets with complicated representations. The hybrid model contains multiple 

IDS techniques to alleviate the impact of false positives or negatives during the prediction mechanism, which helps 

minimize the impact of risks that may be generated or faced in the case of individual model scenarios.  

Deep learning (DL) plays a significant role in multiple disciplinary fields like healthcare (Shamshirband et al., 2021), 

manufacturing, and security (Sarker et al., 2021). In cyber security, Van Huong et al. (2019) suggested a model for logging 

the log information and details of users of an Internet of Things (IoT) system, including address, location, and services, into 

a dataset. After preprocessing and cleaning, the dataset was transformed into an image-like sparse matrix and used to train a 

CNN classifier, which achieved an average accuracy of 98.9%. Wu et al. (2018) proposed a novel method that uses a CNN-

based framework to detect network intrusion. The CNN model tended to improve accuracy even when the class size was 

small and reduced the false alarm rate. Gurung et al. (2019) detected intrusions on an NSL-KDD dataset using a DNN 

network, achieving 87.2 % accuracy; they aimed to lower the false alarm rate to a minimum threshold using the framework. 

With the widespread use of IoT and Android frameworks, the risk of information being compromised has increased; 

the information flows between multiple channels and various malicious attempts to access the confidential information are 

encountered. A survey of malware detection frameworks was performed by Smmarwar et al. (2024) using deep-learning 

techniques. 
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Tsogbaatar et al. (2021) proposed a ‘DeL-IoT’ intrusion-detection framework based on the principle of software-

defined networking. The meaningful features were determined using deep and stacked, layered autoencoders. The proposed 

framework achieved a high detection rate and accuracy in classifying malicious attack attempts, with 99.5- 99.9% in the F-

score and an accuracy of 91.04%-99.95%. Ullah et al. (2021) proposed a model that incorporates CNN1D, CNN2D, and 

CNN3D dense learning for anomaly detection on datasets based on IoT networks, with CNN as the core component of the 

model. The proposed IDS framework was evaluated on several IoT-based IDS datasets, such as BoT-IoT, IoT-DS-2, IoT-

23, and MQTT-IoT-IDS2020. The accuracy of the model was observed in multiclass-classification-based scenarios (i.e., 

cases where datasets contain various attack labels). 

Currently, malicious content writers create AI-driven malicious codes to bypass security checks—their nature is 

difficult to guess and identify. To counter this, hybrid classifiers based on explainable artificial intelligence (XAI) have 

been proposed, which inherit the capabilities of CNN and BiGRU networks. Smmarwar et al. (2023b) proposed XAI-

AMD-DL and tested its performance on the CICAndMal2019 Android malware dataset. 

An Android malware-detection framework was proposed by Smmarwar et al. (2022c), where data preprocessing was 

performed owing to the complex nature of datasets and feature selection was done using discrete wavelet transform. 

Further, a light-weighted CNN version was applied on the optimized dataset for classification purposes. The overall 

framework was composed of three major phases: discrete wavelet transform was used as a feature selector, a generative 

adversarial network was formed, and further classification was done in the third phase. 

Roopak et al. (2020) proposed a hybrid intrusion-detection model consisting of CNN and LSTM. The model 

performance was tested on the CISIDS2017 dataset. A non-dominated sorting genetic algorithm was used for feature 

selection and simple dimension reduction. A model for anomaly identification using a vector convolutional DL technique 

was proposed by Amma et al. (2020). It achieved 99.7496% accuracy in multiclass classification on a BOT-IOT dataset. 

Popoola et al. (2021) proposed a hybrid LAE-BLSTM model for BOT-IOT datasets, achieving an accuracy of 91.89 %, 

with a reduction in dataset size. 

Bhatt et al. (2018) proposed a hybrid anomaly-detection model based on DL and a decision module, achieving an 

accuracy of 98%. The model consists of four major components: isolation forest, self-organizing map, one-class support 

vector machines, and Gaussian mixture modeling. A multi-layer perceptron model was developed (Reddy et al., 2022) for 

intrusion detection and prevention. Its multiclassification performance was evaluated on NSL-KDD and wireless sensor 

network datasets. Alazab et al. (2023) built an IDS model using DL and the optimization technique used is the Harris 

Hawks optimization algorithm, which works by adjusting weight as well as bias sceneries. 

Chandrasekar et al. (2023) proposed an ML classifier to predict heart diseases. It employs deep neural networks and 

convolution networks, and the data was collected from various sources and fed to public healthcare datasets. A DNN  was 

used for feature selection, and fifteen convolution layers were used for prediction, achieving an accuracy of 95.46%. 

Smmarwar et al. (2021) proposed a malware signature detection framework to identify data behavior from byte-level 

or assembly-level data by converting them into visual format and then classifying using a novel triple-fused CNN, which 

identifies outliers that represent abnormal patterns in the data. The proposed framework achieved an accuracy of 98% on 

the Microsoft Malware dataset. Ghani et al. (2023) proposed a DL intrusion-detection framework based on a feedforward 

neural network, which was evaluated over a small feature set on UNSW-NB15 and NSL-KDD datasets. 

Another deep-learning classification framework was proposed by Aljuaid et al. (2024). The feature selection was 

performed in the first stage, the classification of the dataset was performed using a CNN as the base classifier, and analysis 

was performed over the cloud computing domain. The Pearson correlation coefficient was used for feature selection and 

optimization. Farhan et al. (2020) proposed a deep-learning-based classifier where data was preprocessed using binary 

particle swarm optimization before classification. 

 A cloud-based intrusion detection model was proposed by Attou et al. (2023). A random forest classifier was used for 

feature selection and classification owing to the complex nature of the cloud environment; the model achieved good 

accuracy. Jun-Ho Park et al. (2024) used time series data collected from the vibration of a blower motor—used in industry 

to maintain operational efficiency and maintenance regularization—to detect faults. They used ML classifiers in the first 

phase and an extreme gradient-boosting algorithm in the second phase. 

Chen et al. (2023) proposed a fusion graph convolution network to detect faults in sensors used in wireless sensor 

networks. The sensors got faulty due to their hardware, complex working environments, or other attributes. The graph 

convolution network was merged with the ant colony optimization to predict faulty sensors in wireless sensor networks and 

enhance their durability and stability. 

A hybrid classifier (Qazi et al., 2023) that combines RNN and CNN was proposed. Its efficiency was calculated on a 

network's real-time traffic. A 1D CNN layer was used as a feature selector, followed by a CNN-deep-learning classifier 

layer, and four RNN layers were applied to the data. The model works well with data with spatial and temporal 

dependencies. The four layers help improve efficiency, as demonstrated by the performance evaluation metrics. The overall 

objective was to find the best parameters to improve the learning efficiency of the classifier, minimizing the error ratio. In 
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our proposed study, the deep CNN (DCNN) fusion was done on the bidirectional GRU (i.e., a specification of RNN to 

increase efficiency). Table 1 shows the comparison of our proposed work with multiple techniques in the literature. 

 

Table 1. Summary of Significant Related Studies on Intrusion Detection Frameworks 

 

Paper 
Learning 

Algorithms 
Dataset 

Feature Selection/ 

Optimization 
Model Description 

Accuracy 

Classification 

Smmarwar 

et al. 

(2022a) 

OEL-AMD CICInvesAnd 

Mal2019 

Binary Grey Wolf 

Optimization 

Optimized Ensemble 

Learning-based Android 

malware detection and 

classification model 

96.95%(M) and 

83.49%(B) 

 

Ghani et al. 

(2023) 

Feed Forward 

neural network 

classifiers 

UNSW-NB15 and 

NSL-KDD 

the small feature 

vector is being 

selected to evaluate 

the performance 

A machine learning-based 

Feedforward neural 

network classifier is being 

used 

90.11%(B) and 

91.21%(B) 

 

Aljuaid et 

al. (2024) 

CNN CSE-CICIDS2018 Pearson correlation 

coefficient matrix 

heatmap 

A Deep Learning Intrusion 

detection system for 

covering cyber-attacks in 

the cloud computing 

domain 

98.67%(M) 

Farhan et al. 

(2020) 

DNN CICIDS2018 binary particle 

swarm optimization 

(BPSO) 

An Optimized Deep 

Learning Based 

Framework for Intrusion 

Detection 

95%(B) 

Ahmed et 

al. (2023) 

Hybrid CNN-

LSTM 

NSL-KDD CNN (Conv1D) A Hybrid classifier based 

on Deep Learning by 

combining CNN and 

LSTM 

99.20%(M) 

Smmarwar 

et al. 

(2022b) 

RF, Decision 

Tree, SVM RBF 

CIC-

InvesAndMal2019 

dataset 

Wrapping feature 

selection by 

combining 

GreedySW and 

Random Forest 

The performance of 

multiple ML-based 

frameworks has been 

evaluated on the reduced 

feature and optimized 

dataset 

91.80% (SVM 

RBF) achieves the 

highest accuracy 

Qazi et al. 

(2023) 

Hybrid  RNN and  

CNN 

CICID2018 CNN Feature 

extractor layer  

A Hybrid Deep Learning 

base  NIDS framework 

98.90%(M) 

Smmarwar 

et al. 

(2023a) 

Hybrid CNN-

LSTM 

IoT malware, 

Microsoft BIG-2015, 

and Malimg 

Double-Density 

Discrete Wavelet 

Transform (D3WT) 

IoT-based IDS for cyber 

threats that is AI 

empowered 

96.97%, 99.98%, 

99.96% (Accuracy 

achieved for 

datasets ) 

Attou et al. 

(2023) 

Random Forest 

(RF) 

NSL-KDD, Bot-IoT graphic data 

visualization &RF 

feature selection 

A Cloud-Based Intrusion 

detection and prevention 

framework 

98.3% and 98.99% 

(for the datasets) 

Smmarwar 

et al. 

(2022c) 

Light weight 

CNN 

IoT malware, 

Mailing 

Discrete Wavelet 

Transform (DWT) 

Three-phase deep 

Learning framework for 

bug detection in smart 

Agriculture system based 

on IoT 

99% accuracy 

achieved for 

datasets 

Grace et al. 

(2022) 

Hybrid LSTM-

SVM 

CIC-AndMal-2017 

dataset 

Aquila optimizer 

has been used for 

the feature 

optimization 

A hybrid Intrusion 

detection framework has 

been proposed to identify 

malicious patterns 

97% accuracy 

achieved for 

datasets 

Albakri et 

al. (2023) 

Adamax 

optimizer with 

attention 

Andro-AutoPsy Rock Hyrax Swarm 

Optimization-based 

feature subset 

The proposed framework 

works on the principle of 

deep learning for the 

99.05% accuracy 

achieved for 

datasets 



Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention 

 

72 

Paper 
Learning 

Algorithms 
Dataset 

Feature Selection/ 

Optimization 
Model Description 

Accuracy 

Classification 

recurrent 

autoencoder 

(ARAE) 

selection classification of cyber 

security and malware 

detection attempts 

 

4. BACKGROUND OF THE MODELS  
 

4.1 CNN-based IDS 

 

The main objective of CNNs is to determine the relevant characteristics of the incoming stream of data. The simple 

representation of a CNN model used as a simulated model for comparison is shown in Figure 2. Multiple learnable filters 

are applied to a layer that consists of multiple feature extractors, which make up the first layers. The filters use the principle 

of sliding windows, which have been applied to each incoming data flow point. The output is denoted as feature maps, and 

the overlying distance is called the stride. Each CNN layer can be considered as a collection of convolutional kernels, 

which are used to create multiple feature maps. An individual neuron in the feature map of the succeeding layer is 

associated with the adjacent neuron regions. To build the feature map using CNN, the kernel is made available across 

complete spatial locations of the provided input and once the polling and convolution layer are set up, single or multiple 

fully connected layers will be used to complete the classification task.  

 

 
 

Figure 2. CNN Model Flow 

 

The convolution layer is the key building block of the convolutional network used for feature extraction. The 

convolution layers perform both linear and nonlinear operations, that is, a convolution operation as well as an activation 

function (Yamashita et al. 2018). Additionally, convolution operations apply filters (or kernels) to protect the spatial 

relationship between pixels using learned features. 

 

4.2 RNN-based IDS 

 

RNNs are classified as recurrent because they complete the same task of an element in a sequence with the output that has 

been obtained by previous calculations. The RNN information flow and functioning are bidirectional; further, the next 

iteration of the input is reprocessed from the RNN network output. A feedforward RNN network is a combined unit of an 

input layer, a few intermediate hidden layers, and an output layer. The weight matrix is applied to the input, and applying 

the activation function to the derived result generates the output of a simple RNN network node. 

A simple representation of GRU can be seen in Figure 3. In the RNN network (Nikolov et al., 2018), a 

backpropagation algorithm is used for network training. This requires calculating gradients for every weight in the neural 

network and adjusting each weight value such that the required output can be obtained. In our study, base learners (base 

classifiers) are the major building blocks of the hybrid framework, which leverages the capability of individual classifiers 

into one major hybrid classifier with great capabilities. 

GRUs are a form of RNNs commonly denoted as GRU networks. Both types of RNN (GRU and LSTM) are similar in 

function and classification procedures; they both have nearly similar architectures, and GRUs work in a similar way as 

LSTMs, performing sequential or linear data modeling in a such a way that the information is stored as per some retention 

threshold and recalled over the time and will be forgotten after some time. GRU offers a simple structure compared with 
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LSTM, which makes it easier to train with greater computational efficiency using fewer parameters and resources. LSTM 

saves the long-term dependencies among data, which helps improve predictions. The data is saved using vectors called 

memory cell state and hidden state: the memory cell state contains information that is retained for a longer duration, 

whereas the hidden state provides information at the current time step for making predictions that will be further sent to the 

next timestamp steps. LSTM uses three gates, while GRU architecture uses two gates. 

 

 
 

Figure 3. Gated Recurrent Unit 

 

4.3 GRU Architecture 

 

Every GRU cell consists of a reset gate and an update gate. A hidden cell-state concept is used in GRU instead of a separate 

cell state used in LSTM. A hidden cell state at timestamp ‘t’ is denoted as ht.  

The overall information flow in a cell is regulated using a reset gate and update gate, which also helps address the 

problem of vanishing gradients faced by traditional RNNs. The reset gates in GRU cells evaluate the information carried 

that is not useful and discard it or not consider it. This is done by either examining the previous hidden state vector and 

deciding the part to ignore or to reset again. The update gate is responsible for identifying new information vectors to be 

considered or to be retained from the previous hidden state vector. At timestamp ‘t’, we have four major components that 

impact the working of the GRU cell: the reset gate, update gate, previously hidden state vectors, candidate or new hidden 

state vectors, and the input data provided at every timestamp.  

 

 
(a) 
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(b) 

 

Figure 4. The internal architecture of a GRU cell; (a) GRU Cell; (b) BiGRU Single Layer 

 

Figure 4 shows the internal architecture of a GRU cell: how the vectors flow and are added and multiplied to calculate 

new variables to perform reset and update operations at every timestamp. 

To evaluate the information flow of the above GRU cell, the equation below represents the overall working of a single 

cell unit.  

 

i. Reset Gate: The reset gate component is responsible for evaluating the previous information that is not necessary to be 

carried further for the next timestamps and to be discarded or forgotten. At timestamp t, the calculation done by the reset 

gate can be evaluated as below. 

 

𝑅𝑡 = 𝜎 (𝑊𝑟  ∙ [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑟) (1) 

 

where 

 

𝑅𝑡    : The reset gate vector at timestamp t, 𝑥𝑡 is the input variable.  

𝑊𝑟  : The learning weighted matrix vector maintained at a timestamp by reset gate. 

[ℎ𝑡−1 , 𝑥𝑡]  : The mathematical expression used to represent the concatenation between the  current input 𝑥𝑡 and the 

received previous hidden state vector  ℎ𝑡−1 , which is why the time stamp is being represented by the 

notation t-1 (it is showing the previous timestamp value). 

𝑏𝑟   : The bias component used by the reset gate to adjust values accordingly. 

𝑊𝑟 . [ℎ𝑡−1 , 𝑥𝑡]  : The dot product of reset gate weighted vectors and the previous hidden state. 

𝜎   : The sigmoid function used as an activation function whose value fluctuates in the range of 0–1. 

  

ii. Update Gate: The update gate component is responsible for identifying the important previous hidden state information 

from past timestamps to be retained, and the new information from the current timestamp is to be incorporated. It carries 

past meaningful information and updates important information in place of less meaningful data. 

 

𝑍𝑡 = 𝜎 ( 𝑊𝑧  ∙  [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑧 )  , (2) 

 
where 

𝑍𝑡    : The update gate vector at timestamp t, 𝑥𝑡 is the input variable.  

𝑊𝑍  : The learning weighted matrix vector maintained at a timestamp by the update gate. 

[ℎ𝑡−1 , 𝑥𝑡]  : The mathematical expression used to represent the concatenation performed between the  current input 𝑥𝑡 

and the received previous hidden state vector  ℎ𝑡−1. 

𝑏𝑧  : The bias component used by the update gate to adjust values accordingly. 

𝑊𝑧 . [ℎ𝑡−1 , 𝑥𝑡]  : The dot product of  update gate weighted vectors and the previous hidden state; 𝜎  is the sigmoid function 



Sharma and Nihalani A Proficient Hybrid Classifier for Reliable Intrusion Detection and Prevention 

 

75 

 

iii. Candidate hidden state: It is calculated by finding the new capable hidden state vector ℎ�̅� . A reset gate is used to 

examine the values to forget from the previous hidden state. 

 

ℎ�̅� = 𝐭𝐚𝐧𝐡  (𝑊ℎ ∙  [𝑟𝑡  ⊙  ℎ𝑡−1 , 𝑥𝑡] + 𝑏ℎ)  (3) 

 

where 

 

tanh  : The hyperbolic tangent activation function. 

𝑟𝑡  ⊙ ℎ𝑡−1  : The element-wise multiplication of the reset gate and previous hidden state; ⊙ represents the Hadamard 

product. 

𝑊ℎ  : The learning weighted matrix vector maintained at a timestamp by the candidate's hidden state. 

𝑏ℎ  : The bias component used by the candidate's hidden state to adjust values accordingly. 

 

iv. Final hidden state: It is denoted as a vector ℎ𝑡  . The update gate is used to examine the values; it is a combination of the 

previous hidden state vector ℎ𝑡−1 and candidate hidden state vectors ℎ�̅� . 

 

ℎ𝑡  = 𝑧𝑡  ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡)  ⊙ ℎ�̅� (4) 

 

where 

 

tanh  : The hyperbolic tangent activation function  

𝑧𝑡  ⊙  ℎ𝑡−1   : The element-wise multiplication of the update gate and previous hidden state; ⊙ is the Hadamard 

product, which shows all hidden states to be retained as per the update gate. 

(1 − 𝑧𝑡)  ⊙ ℎ�̅�    : The hidden state of the candidate. 

 

The GRU architecture consists of the following components: 

i. Input layer: This layer acts as an interface to input the data to be evaluated or processed. 

ii. Hidden layer: It is responsible for recurrent operations. At the current timestamp, the new hidden state is 

evaluated using the input data and the previous hidden state. The hidden state is the memory component of RNN 

cells. 

iii. Reset gate: It is responsible for eliminating or forgetting less meaningful hidden state variables. It performs 

calculations on the current input and previous hidden state and generates the vectors in the range of 0–1. It 

controls the degree to which the previous hidden state vectors reset a current timestamp.  

iv. Update gate: It finds the candidate activation vectors in the range of 0–1 that need to be incorporated into the 

new hidden state. Its mathematical notation can be seen in Equation 2.  

v. Candidate activation vector: It is the combination of the current timestamp input and the reset version of the 

previous hidden state. The tanh activation function is used for the calculation (Equation 3). 

vi. Output layer: The final hidden state vectors evaluated can be in the output layer, as mathematically represented 

by Equation 4. 

Now consider 𝑦�̅�  as the prediction output of the model, and the actual output is 𝑦𝑡 . Then, the error can be calculated 

using the formula below at timestamp ‘t’: 

 

 𝐸𝑡 = - 𝑦𝑡 log(𝑦�̅�) (5) 

 

The total error summation is calculated for all timestamps 𝐸𝑡 = ∑ 𝐸𝑡𝑡   ,   𝐸𝑡 = ∑  𝑡 −  𝑦𝑡 log (𝑦�̅�) 

 

The summation of gradients for all timestamps is calculated by the formula. 

 
𝜕𝐸

𝜕𝑊
=  ∑  

𝑡

𝜕𝐸𝑡

𝜕𝑊
 (6) 

 

Using the Chain rule. 𝑦�̅� can be calculated as a function based on ℎ𝑡 and in parallel; ℎ𝑡 is calculated based on  ℎ�̅�. On 

the above basis, the chain relationship can be expressed as below. 
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𝜕𝐸𝑡

𝜕𝑊
=  

𝜕𝐸𝑡

 𝜕𝑦�̅�
   

𝜕𝑦�̅�

 𝜕ℎ𝑡
  

𝜕ℎ𝑡

 𝜕ℎ𝑡−1
   

𝜕ℎ𝑡−1

𝜕ℎ𝑡−2
… … … … … … 

𝜕ℎ0

𝜕𝑊
 (7) 

 

The total error observed due to gradients can be calculated by the summation of differential vectors: 

 
𝜕𝐸𝑡

𝜕𝑊
=  ∑

𝜕𝐸𝑡

 𝜕𝑦�̅�
   

𝜕𝑦�̅�

 𝜕ℎ𝑡
  

𝜕ℎ𝑡

 𝜕ℎ𝑡−1
   

𝜕ℎ𝑡−1

𝜕ℎ𝑡−2
… … … … … … 

𝜕ℎ0

𝜕𝑊
 (8) 

 

Now, putting the value of  ℎ𝑡 final hidden state vector from Equation 4 in the chain of derivative expression 
𝜕ℎ𝑡

 𝜕ℎ𝑡−1
 ,  the total 

gradient loss due to the hidden state will be calculated as below. 

 

𝜕ℎ𝑡

 𝜕ℎ𝑡−1
  = 𝑧 + (1 − 𝑧) 

𝜕ℎ�̅�

 𝜕ℎ𝑡−1
 (9) 

 

Substituting the expression of  ℎ�̅� hidden state vector  from 𝐸quation 3 in the expression  
𝜕ℎ𝑡̅̅ ̅

 𝜕ℎ𝑡−1
 , the total gradient loss 

error for the final state will be calculated as below. 

 
𝜕ℎ𝑡̅̅ ̅

 𝜕ℎ𝑡−1
   = 

𝜕 𝒕𝒂𝒏𝒉  (𝑊ℎ∙ [𝑟𝑡  ⊙ ℎ𝑡−1 ,𝑥𝑡]+𝑏ℎ)

 𝜕ℎ𝑡−1
 (10) 

 

Now Equations 3 and 4 will be kept on the above variables to minimize the gradient descent loss. The sigmoid 

function is used in the GRU cell by both the reset and update gates; thus, it can either take a value of 0 or 1. Now consider 

the conditions below per reset gate (r) and update gate vector (z): 

 

Condition 1: if z=1, then irrespective of the value of r, the expression  
𝜕ℎ𝑡̅̅ ̅

 𝜕ℎ𝑡−1
 , will evaluate to be z only when I equal 1. 

Condition 2: (r=0,z=0) when both sigmoidal values are 0, then the expression  
𝜕ℎ𝑡̅̅ ̅

 𝜕ℎ𝑡−1
 evaluate𝑠 to 0. 

Condition 3: (z=0, r=1), the value evaluates to close to 1; in this way, the vanishing gradient will be addressed such 

that it will be prevented from being negligible in the threshold. 

 

This study focuses on building a hybrid framework for intrusion detection to be applied to datasets, training of 

models, and validation of accuracy. The loss incurred is calculated, and the proposed model is compared with other ML 

models. Many studies provide solutions based on various ML models; however, very few employ the concept of a hybrid 

classifier in intrusion detection. In our study, we used commonly used datasets. This study advances our knowledge of 

network intrusion detection and offers valuable data for the creation of DL models for IDSs in the future. 

 

5. PROPOSED METHOD 

 

We used a hybrid model composed of CNN, DNN, and BiGRU, individual classifiers with different scopes and domains of 

classification tasks. Our model is highly influenced by the hybrid combination of classifiers, that is, CNN-BiLSTM ( LSTM 

is a form of RNN). Thus, we propose an approach for IDS by developing a hybrid framework, assembling a CNN layer 

with a more dense form using DNN layers followed by CNN layers (i.e., DCNN). The two major blocks, DCNN and 

BiGRU, were merged. Therefore, the hybrid model was composed of CNN (for feature enforcement) BiGRU layers, 

followed by DNN layers (to reduce the error and loss incurred). The setup was run on Python 3.8. The efficiency and 

results were compared with those of other methods. In addition to the proposed hybrid model, we mutated and calculated 

the efficiency of individual classifiers—CNN, DNN, the autoencoder (AE), and the decoder. The proposed model achieved 

the best accuracy, as shown in Table 8. The overall study consisted of the following steps. 

a) Selecting the dataset for the study. 

b) Transforming and preprocessing the data. 

c) Finding the scope of improvement. 

d) Selecting the suitable ML models for evaluation on the dataset. 

e) Calculating the metrics and comparing them with the metrics of other ML classifiers. 
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5.1 Preprocessing 

 

To build an intrusion-detection model, we performed a hybrid merger by combining CNN, bidirectional GRU, and DNN 

(i.e., DCNN-BiGRU). We preprocessed, cleaned, and transformed the data before applying classification models to the 

dataset. Most classifiers show performance improvement if the data are preprocessed. Data preprocessing helps to maintain 

the integrity of data by removing null values, duplicate records, irrelevant attributes, dirty data, and so on. 

Artificial neural networks (ANNs) were trained on high-dimensional data from previous statistics of fraudulent 

detection to predict the possibility of data or information breaches in existing systems, and if any, the system automatically 

stops all the data or information flows without losing information. We discuss IDSs implemented through DL algorithms, 

the parameters on which DL procedures work, and how they will prevent cyber intelligence systems from getting breached. 

Networks generate massive amounts of data, which requires preprocessing to remove noise, handle missing values, 

and normalize the data. Techniques such as data cleaning, feature scaling, and feature engineering are applied to improve 

data format in terms of values. Feature selection is one of the most important steps that helps ML models learn and evaluate 

better by removing unnecessary features that are insignificant in the overall evaluation. Many feature-selection algorithms 

exist. Dimension-reduction algorithms are used in cases where datasets have huge feature complexity. We first removed 

irrelevant features. The benefit of using a hybrid framework of ML classifiers for malicious intent detection in cyber 

security is their ability to gain or increase in overall performance, accuracy, and robustness with the combination of 

different classifiers. The hybrid framework can better generalize patterns and adapt to evolving attack techniques. In cases 

of unbalanced datasets where there are huge variations in the number of records between multiple class labels (attack 

types), hybrid frameworks outperform individual classifiers. 

 

5.2 Data Collection and Processing Using One Hot Encoding 

 

We used the CICIDS2019 dataset, the common network dataset that accurately reflects modern-day traffic. By utilizing the 

collective wisdom of CNN or correlation analysis, the selection process helps identify the most influential features in the 

dataset, contributing to better model accuracy and interpretability. Features with higher importance are considered more 

relevant for prediction and are retained, while features with lower importance are dropped. Manual features dropped can 

also be performed. Table 3 shows the feature list of the dataset considered for analysis. For preprocessing, the one-hot-

encoding technique was used to help convert the string or categorical attributes into numerical form because the majority of 

DL classifiers work on numerical data. 

 

5.3 Dataset 

 

Table 2 presents the total attack labels contained by the dataset. It contains 18 attack classes, and we used the dataset for a 

multiclass classification-based scenario. To determine the efficiency of the proposed DCNN-BiGRU algorithm, we split the 

dataset into training and testing (validation) sets at a ratio of 75:25 (training: testing).  

Our proposed model achieved the best accuracy of all the simulated models owing to the inherent best properties of 

all individual classifiers such as DNN, CNN, and AE. Table 2 shows the attributes of the dataset. The hybrid model was 

trained on labeled data where both normal and attack instances are included. The training stage consisted of optimizing the 

model parameters and determining the best performance setting. After training, the hybrid framework was deployed in real-

time scenarios of networks to detect and respond to attacks. Incoming network traffic and device data were continuously 

monitored, and the hybrid model evaluated the data to identify suspicious patterns or anomalies. In the event of an attack 

being detected, appropriate actions can be taken, such as blocking malicious traffic or isolating affected devices. 

We obtained data from multiple authentic sources. The data contained several intrusions that were simulated in an 

intelligence network context. The simulated models were tested on raw TCP/IP network traffic data. Several networks were 

bombarded with multiple known attacks in the simulated environment, and all normal and abnormal parameters were saved 

in some CSV, Excel, or Notepad files. These files were further considered as the raw datasets for IDS scenarios. The 

attributes were stored for a few days, hours, and so on. The simulated environments had two types of data according to their 

behavior: normal and abnormal. If the classifier is trained using unbalanced data labels, there is a possibility of getting 

variations in classifier precision capability. Some specific class labels have to underfit or overfit data records, and so 

accordingly the predictions will be made. 
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Table 2. Dataset Used With Label Types  in Current Scenario 

 

Used Dataset File specified  Label Types(Total Classes) Training & Training size 

X_train Shape,Y_train Shape 

train_test_split=(75% , 25%) 

 

Total Dataset size 

Total Attributes:76 

Total Class Label:18 

Total records: 431371 

CICIDS2019 CICIDS2019 Benign,DrDoS_NTP,TFTP,Syn,UDP,

DrDoS_UDP,UDP-

lag,MSSQL,DrDoS_MSSQL,DrDoS_

DNS,DrDoS_SNMP,LDAP,DrDoS_L

DAP,Portmap,NetBIOS,DrDoS_NetB

IOS,UDPLag,WebDDoS 

X_train Shape: (323528, 76) 

Y_train Shape: (323528, 18) 

X_test Shape: (107843, 76) 

Y_test Shape: (107843, 18) 

X Shape: (431371, 76) 

Y Shape: (431371, 18) 

 

Table 3. Dataset Features Used 

 

Dataset Attributes used (76 Attributes in total after dropping 2 attributes, i.e. Idle_min and class attribute): as 

we focus on multiclass classification, we opted “label” attribute after removing the class attribute as both 

contain duplicate data from the dataset ) 

CICIDS2019 index, Protocol, Flow Duration, Total Fwd Packets,   Total Backward Packets, Fwd Packets Length Total, 

Bwd Packets Length Total, Fwd Packet Length Max,  Fwd Packet Length Min, Fwd Packet Length Mean,  

Fwd Packet Length Std, Bwd Packet Length Max, Bwd Packet Length Min, Bwd Packet Length Mean,  

Bwd Packet Length Std, Flow Bytes/s, Flow Packets/s, Flow IAT Mean, Flow IAT Std, Flow IAT Max, 

Flow IAT Min, Fwd IAT Total, Fwd IAT Mean, Fwd IAT Std, Fwd IAT Max,  Fwd IAT Min, Bwd IAT 

Total, Bwd IAT Mean, Bwd IAT Std, Bwd IAT Max, Bwd IAT Min, Fwd PSH Flags, Bwd PSH Flags, 

Fwd URG Flags, Bwd URG Flags, Fwd Header Length, Bwd Header Length, Fwd Packets/s, Bwd 

Packets/s, Packet Length Min, Packet Length Max, Packet Length Mean, Packet Length Std, Packet Length 

Variance, FIN Flag Count, SYN Flag Count, RST Flag Count, PSH Flag Count, ACK Flag Count,  URG 

Flag Count, CWE Flag Count, ECE Flag Count, Down/Up Ratio, Avg Packet Size, Avg Fwd Segment Size, 

Avg Bwd Segment Size, Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg 

Bytes/Bulk, Bwd Avg Packets/Bulk, Bwd Avg Bulk Rate, Subflow Fwd Packets, Subflow Fwd Bytes, 

Subflow Bwd Packets,  Subflow Bwd Bytes, Init Fwd Win Bytes, Init Bwd Win Bytes,Fwd Act Data 

Packets, Fwd Seg Size Min, Active Mean, Active Std, Active Max, Active Min, Idle Mean, Idle Std, Idle 

Max'. 

 

5.4 Data Normalization 

 

Multiple data-normalization methods are available. We used the standard scalar technique to normalize data in the range of 

[1, +1] or [0, +1]. The data normalization works in such a way that it normalizes the data as per the nature of DL 

procedures. It normalizes the feature values in the range of [1, +1] or [0, +1]. Data Normalization can also be referred to as 

a standardization procedure, as it boosts up the classifier efficiency in terms of memory consumption, execution time, and 

accuracy. 

 

5.5 Deep Neural Network (DNN) Model 

 

DNN is the type of ANN that can be used to build multiple strong IDS frameworks; DNN may also be mutated by itself and 

applied to datasets for attack or class label prediction. We used a DNN model depicted in Figure 5, consisting of the input 

layer, hidden layer (128 * 256 * 128 neurons), and rectified linear unit (ReLu) activation function, with a learning rate of 

0.0001 and dropout scale of 0.1 (the same for all simulated models below).  

A DNN can be modified in terms of the hidden layers it contains; the more hidden layers with more neurons or 

processing, the more complexity. DNNs may be used in multiple research in some ways. They take inputs and do more 

refined calculations or computations on them and provide results through output layers. DNN is one of the best frameworks 

for real-life problems like classification and regression of incoming data through prediction and learning. 
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Figure 5. DNN Model Applied with Input, Hidden, and output Layers 

 
 

Figure 6. Proposed Deep CNN-BiGRU Model 

 

5.6 Convolution Neural Network (CNN) 

 

CNN consists of multiple array units to process data (Albawi et al., 2017). The primary objective of CNN is to extract 

features, although by maintaining the sequential data information, CNN produced the best results for some problems like 

image recognition. It works by finding spatial data correlations in the input data. Figure 7 shows the simple model for the 

CNN information flow that we applied to our dataset as described above. First used, Conv_1D (128) layer, ReLu as an 

activation function, Adam as an optimizer, Conv_1D (256) layer, and a dropout rate of 0.1, as depicted in Figure 7. 

CNN is applied to visual or image data classification tasks. It consists of three layers: the input layer, the hidden layer, 

and the output layer. Data is fed into the network; the output from the layer is obtained by a mechanism called feedforward. 

Errors are measured using error functions, such as square error loss function or cross-entropy. The calculation done by error 

functions helps identify whether the model is performing well or not. The backpropagation method is deployed between 

layers to minimize the loss. 
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Figure 7. CNN Model  

 

5.7 Autoencoder (AE) 

 

Autoencoders encode data post-compressing. They follow unsupervised learning. They are a type of ANN or simply 

derived from ANNs. They learn and reconstruct data back into its original form from the encoded compressed form. The 

compression and successive rebuild phenomena are extremely complicated operations. The input data features or 

characteristics are completely autonomous from each other. The goal of an autoencoder (Tschannen et al., 2018) is to learn 

how to perform lower-dimensional representation (encoding) of complicated high-dimensional data (.i.e., data dimension 

reduction). The AE model of nature (128*64*32*16) was used in our study, as depicted in Figure 8, with the same 

parameters. 

 

 
Figure 8. AE Encoder & Decoder Model Layers Applied 

 

5.8 DCNN-BiGRU 

 

The DCNN-BiGRU architecture is composed of the CNN model, kept as the first layer for the feature selection and 

boosting process (Gu et al., 2018). We performed manual removal after BiGRU sequence forecasting or classification to 

get a reliable output. The DNN layer was placed at the end to boost the performance by minimizing the loss and error ratio. 

We built  DCNN-BiGRU by first enclosing CNN layers as the first layer, followed by BiGRU layers, and at last, DNN. 

Figure 6 shows the proposed DCNN-BiGRU model, and the steps we used to implement the model are given in the 

algorithm. 
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5.9. Proposed DCNN-BiGRU Algorithm: 

 

Algorithm: DCNN-BiGRU- Model Training, Validation 

 

Data: Dtrain: The training dataset for the ML models (df), multiple Hybrid learners 

Result: A hybrid fusion model, with an Accuracy level applied 

Step 1: To select relevant features in nature from the Input set of features that can be denoted as f1,f2…….fn. 

Where ‘n’ represents the number of features considered. 

Step 2: Divide the Input dataset dfFeatures into training and testing sets. 

Step 3: Layered Stack of model ( ). 

Step 4: Apply Convolution1D Layer, where Kernel attributes shape = n, with Input shape (76, 1). 

Step 5: Apply the Activation function on the flow: ReLu. 

Step 6: Application of BatchNormalization ( ) Layer on Model. 

Step 7: Apply Bidirectional GRU Cell Layer to the framework, (Neurons =64). 

Step 8: Apply Reshape Layer on the flow, i.e. (input size =128). 

Step 9: Apply the Batch Normalization Layer to the model (). 

Step 10: Apply Bidirectional GRU Cell Layer to the framework, (Neurons =128). 

Step 11: Apply Dropout Layer. 

Step 12: Apply Deep Neural Network (DNN) of capacity,  Neurons =256,128,16(output Layer). 

Step 13: Apply the Activation function on the flow: ReLu. 

Step 13: Here Dense (n_classes) for our dataset is 16, Neurons (n_classes) = Neurons16(output Layer). 

Step14: Apply the Activation function on the flow: Softmax  

 

The first layer (CNN) is boosted and activated using the ReLu activation function as in the equation is below. The 

equations for Softmax activation and batch normalization procedure are also given below. 

 

Relu (K)  = maximum (0, k) 

BatchNormalization (k)  =  
(𝑘−𝑀𝑖𝑛)

(𝑀𝑎𝑥−𝑀𝑖𝑛)
 

Softmax (Input K)  =  
exp (𝐾𝑖 ) 

∑exp (𝐾𝑖 ) 
 

 

Below are some parameters used in the proposed algorithm. The optimizer function used was Adam, with a learning 

rate of 0.0001,  used for all the models—DNN, AE, CNN, and DCNN-BiGRU. We also employed the ReLu activation for 

multiclass classification, Softmax activation, one hot encoding, and categorical entropy loss function. 

 

5.9. Proposed DCNN-BiGRU Algorithm Step-7 Detailed Illustration 

 

The computation steps are shown below. The update gate component is responsible for identifying the previous hidden state 

information that is important and to be retained from past timestamps and the new information from current timestamps to 

be incorporated. It conveys past meaningful information and updates important information in place of less meaningful 

data. 

• The mathematical computations for the update gate, z = σ (Wz⋅xt+Uz⋅h(t−1)+bz), can be evaluated using Equation 2.  

• The reset gate component is responsible for evaluating whether the previous information is necessary to be carried 

further for the next timestamps or must be discarded. At timestamp t, the reset-gate calculation can be evaluated as 

below. 

• r = σ (Wr ⋅ xt + Ur ⋅ h(t−1) + br ), which can be evaluated using Equation 1. 

• The intermediate memory component, h~ = tanh (Wh ⋅ xt + r ∗ Uh ⋅ h (t−1) + bz ), can be evaluated using Equation 3. 

• The output layer takes the final hidden state as input and produces the network output. This could be a single number, 

a sequence of numbers, or a probability distribution over classes, depending on the task at hand. 

• Output h = z ∗ h (t−1) + (1−z) ∗ h~, which can be evaluated using Equation 4. 

• In Figure 9, 𝑥𝑡 represents the sequential input data with a dimension (Dim) of S * B *V, where ‘S’ is the sequence 

length, ‘B’ is the batch size, and ‘V’ is the number of inputs during a single iteration. 

• 𝑟𝑡 is the reset gate unit in the GRU cell, and 𝑧𝑡  is the update gate; the calculation equation is described above and in 

Section 4. 
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The two more major components used in every GRU cell are candidate hidden state ℎ�̅�  and final hidden state ℎ𝑡 

denoted at any current timestamp. The reset gate determines the values from the previous hidden state to further forget. The 

update gate determines the values from the hidden and candidate hidden states to be considered further. 

The legends in the above step represent the element-wise multiplication and addition between the learning weighted 

matrix at a time stamp between multiple components, 𝑊𝑧 is the weighted learning matrix for the update gate, 𝑊𝑟 is the 

weighted learning matrix of reset gate and 𝑊ℎ is a weighted learning matrix for the candidate's hidden state. 

𝑟𝑡  ⊙ ℎ𝑡−1 represents the element-wise multiplication of the reset gate and previous hidden state, and the notation ⊙ 

represents the Hadamard product. 

𝑧𝑡  ⊙  ℎ𝑡−1 represents the element-wise multiplication of the update gate and previous hidden state; it shows all the 

hidden states to be retained as per the update gate. 

 

 
 

Figure 9. GRU Cell Architecture 

 

6. RESULT ANALYSIS AND DISCUSSION 
 

We briefly analyze the metrics obtained by the IDS classifiers, comparing CNN, DNN, AE (conventional models), and the 

proposed framework (DCNN-BiGRU). Convolution networks have convolution layers as the basic building blocks. They 

are widely adopted to select distinct features. They are modeled after the concept of biological neurons, where 

characteristics from the previous layer of convolution are used in high-level feature abstraction. Numerous artificial 

neurons work in various layers to compute the weighted factor and perform its sum at the input and output of activation. 

After the CNN layer is the BiGRU layer, which performs well in cases that require quick learning and adapting to new 

inputs. GRU performs well by saving short-term dependencies in the data and the DNN layer reduces the error and loss. 

The accuracy-evaluation experiments were performed using several ML methods to assess the performance of our proposed 

model. We used 431371 samples, 18 class labels, and 78 attributes from the cicddos2019 dataset from Mendeley, out of 

which we removed 2 attributes. We manually eliminated features owing to duplicity and irrelevancy. Table 3 represents the 

attribute names considered for analysis, and Table 2 shows the label types in the dataset. Table 5 shows the percentage 

distribution of records in data classwise. It can be observed that the data distribution is uneven. Table 6 shows the 

performance evaluation of the proposed model compared with that of other studies. 
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One of the problems faced with the available datasets in network analysis or IoT analysis is the distribution of class 

labels for attacks in terms of tuples in CSV files or text files; the distribution of data among various class labels is uneven, 

which compromises the model training and testing. If we want the classifier to have good prediction capability and 

accuracy for the class attack labels, then we cannot compromise in terms of the provided records in the datasets because, for 

any specific class, fewer records or tuples result in training issues in terms of performance. If the classifier is trained on 

small amounts of data for class labels and expectations are high, then it cannot be guaranteed to perform well and give good 

precision and f1 scores. We proceed with the current distribution; however, we can use techniques like SMOTE to remove 

the class label imbalance ratios when required. 

We compared the performance in terms of accuracy and the loss rate between DNN, CNN, AE, and DCNN-BiGRU 

techniques. The models were trained and validated on datasets on GPU environments or simply platforms that show a 

decrease in the training duration as shown in Table 8 for model performance description for the cicddos2019 dataset. Table 

7 shows the model description and hyperparameter tuning for all four algorithms used on the cicddos2019 dataset. Table 4 

shows the metric calculation base, and  Figures 10 to 13 show the confusion matrix of all the classifiers. Our proposed 

model gives a higher accuracy of 99.70 % in multiclass classification. Figures 14 to 17 show the training, validation, 

accuracy, and loss incurred by all the algorithms. The efficiency of the IDS algorithm depends on multiple parameters like 

dataset features selected, the learning rate activation function, and so on. Developing an ideal classifier is an interesting 

field of research. Thus, it will not be justified to say the proposed model is the best fit for every dataset. 

 

6.1 Confusion Matrix (CM) 

The confusion matrix is used to show the correlation between the actual and expected class. It is also helpful in estimating 

AUC and ROC curves, specificity, precision, recall, and accuracy. Table 4 shows the confusion matrix. 

 

Table 4. Confusion Matrix (CM) 

 

Class Actual Positive Class Actual Negative Class 

Predicted Positive Class TP FP 

Predicted Negative Class FN TN 

 

i. Accuracy  

The percentage of instances that are correctly classified is calculated as follows: 

 

Accuracy = 
TP+TN

(TP+TN+FP+FN)
 

 

Table 5. Percentage Classwise Distribution of Records on Cicddos2019 Dataset 

 

Traffic Type Class Name Instances Percentage 

Normal Benign 97381 22.679 

Abnormal DrDoS_NTP 121368 28.135 

Abnormal TFTP 98917 22.931 

Abnormal Syn 49373 11.446 

Abnormal UDP 18090 4.194 

Abnormal DrDoS_UDP 10420 2.416 

Abnormal UDP-lag 8872 2.057 

Abnormal MSSQL 8523 1.976 

Abnormal DrDoS_MSSQL 6212 1.44 

Abnormal DrDoS_DNS 3669 0.851 

Abnormal DrDoS_SNMP 2717 0.63 

Abnormal LDAP 1906 0.442 

Abnormal DrDoS_LDAP 1440 0.334 

Abnormal Portmap 685 0.159 

Abnormal NetBIOS 644 0.149 

Abnormal DrDoS_NetBIOS 598 0.139 

Abnormal UDPLag 55 0.013 

Abnormal WebDDoS 51 0.012 
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If datasets face class label imbalance, multiple algorithms work for the input datasets and help remove the class label 

imbalance ratios, and we can fit the SMOTE function as per need. We can directly apply the algorithm function on the 

complete dataset in a way that automatically adjusts the data records classwise, either by replication or generation of more 

records for the underfit class label. We can also specify the value in terms of integer up to which we want the class label 

records to be scaled or increased. 

 

 
Figure 10. DNN Confusion Matrix 

ii) Error Rate  

 

The percentage of predicted values that are incorrectly categorized is determined as follows: 

 

Error rate = 1- Accuracy 
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Figure 11. CNN Confusion Matrix 

 

 
 

Figure 12. Auto Encoder Confusion Matrix 

 

 
 

Figure 13. DCNN-BiGRU: Hybrid Confusion Matrix 

 

Table 6. Performance Evaluation of the Proposed Model and Those of Other Studies 

 

Paper Model Dataset Accuracy Loss Inference Time 

Reddy et al. (2022) MLP NSL-KDD, wireless 

sensor networks 

98 %(M) 0.0198 13.25 seconds 

Alazab et al. (2024) HHO-MLP KDD Datasets 93.17(M) * * 

AL-Hawawreh et al. 

(2018) 

ADS NSL-KDD and UNSW-

NB15 

92.40%(M) and 

98.60%(M) 

8.2, 1.8 5.50 seconds,2.25 

seconds 

Halbouni et al. (2022) CNN-LSTM CIC-IDS 2017, UNSW- 99.59%(B), * 763 seconds, 244 
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Paper Model Dataset Accuracy Loss Inference Time 

Hybrid NB15, WSN-DS 93.68%(B), 

99.61%(B) 

sec, 112 sec 

Altunay et al. (2022) CNN+LSTM UNSW-NB15, X-

IIoTID 

93.21%(B), 

92.9% (M)(both 

for UNSW-

NB15)  &  

99.84% (B), 

99.80%(M) for 

IIoTID  

6.21%(B), 

6.28%(M) 

(UNSB-NB15) & 

0.12%(B), 

0.12%(M) for 

IIoTID 

* 

Sun et al. (2020) CNN-LSTM 

Hybrid 

CICIDS207 99.50%[M] * * 

Popoola et al. (2021) LAE-BLSTM BOT-IOT 91.80%(M) * 0.2359sec 

Zhai et al. (2023) CNN–GRU NSL-KDD 78.79% * * 

De La Torre Parra et 

al. (2020) 

DCNN LssSTM Version N_BaIoT 94.80% (B) 

94.20% (M) 

* * 

Proposed study DCNN-BiGRU cicddos2019 0.9970(M) 0.0123 39.38 seconds 

* represents: Not available, M: multiclassification of class label, B: binary label classification 

 

 
 

Figure 14. DNN Training, Validation, Accuracy, Loss 
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Figure 15. CNN Training, Validation, Accuracy, Loss 

 
 

 

Figure 16. AE Training, Validation, Accuracy, Loss 

   

 
 

Figure 17. DCNN-BiGRU Training, Validation, Accuracy, Loss 

 

Table 7. Model Description With Hyperparameter Tuning Used on the Cicddos2019 Dataset 

 

Model 

Name(Dynamic) 

Model Description 

Layer Architecture Dropout Loss entropy 
Learning 

Rate 
Platform Activation Epochs 

Batch 

Size 

DNN(Dense 

Neural Network) 

Dense(128 * 256 * 128) 0.1 BinaryCrossentropy 0.0001 GPU ReLu/softmax 30 128 

CNN Convolution1D(128) 

*Convolution1D(256)* 

Dense(256) * Dense(18) 

0.1 categorical_crossentropy 0.0001 GPU ReLu/softmax 30 128 

Auto 

Encoder/decoder 

Dense(128 * 64 *32 

*16)(16*32*64*128) 

0.1 Mae 0.0001 GPU elu 30 128 

DCNN-BiGRU Convolution1D(128) * 

BiGRU(64) * BiGRU (128) * 

Dense(256)*Dense (128)*Dense 

(n_classes) 

0.1 BinaryCrossentropy 0.0001 GPU ReLu/softmax 30 128 
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Table 8. Model Performance Description Used on the Cicddos2019 Dataset 

 

Model Name 

Model Performance 

Layer Architecture Optimizer Dataset 
Inference 

Time 
Recall Precision 

F1 

score 
Loss Accuracy 

ROC-

AUC 

DNN(Dense 

Neural 

Network) 

Dense(128 * 256 * 128) Adam cicddos2019 10.36 

seconds 

0.9947 0.9946 0.9946 0.0018 0.9948 0.9325 

CNN Convolution1D(128)* 

Dense(256) * Dense(18) 

 

Adam cicddos2019 10.38 

seconds 

0.9966 0.9966 0.9966 0.0129 0.9967 0.9431 

Auto Encoder Dense(128 * 64 *32 

*16)(16*32*64*128) 

Adam cicddos2019 6.76 

seconds 

0.9957 0.9957 0.9956 0.0013 0.9958 0.9351 

DCNN-

BiGRU 

Convolution1D(128) * 

BiGRU(64) * BiGRU (128) * 

Dense(256)*Dense (128)*Dense 

(n_classes) 

Adam cicddos2019 39.38 

seconds 

0.9969 0.9969 0.9969 0.0123 0.9970 0.9615 

 

7. CONCLUSION 
 

Using our proposed model, we analyzed real network traffic of the cicddos2019 dataset and compared the efficiency of 

multiple models of a similar type. The proposed hybrid DCNN-BiGRU model outperformed all the other standard 

benchmark classifiers of a similar type evaluated in this study. The major objective was to enhance the multiclass 

classification accuracy of  ML classifiers on the applied datasets, where correct predictions had to be made under multiple 

attack labels. The performance of ML classifiers decreases when making multiclass-based predictions. Our proposed model 

proved dependable from an accuracy perspective. DCNN-BiGRU architecture leverages the strengths of each model; the 

proposed hybrid model can detect abnormal attack patterns in datasets with a higher accuracy percentage than the standard 

models. Experimental results show that the proposed DCNN-BiGRU hybrid model outperformed other standard models in 

accuracy, with a value of 99.70 %. As DCNN-BiGRU is a hybrid model, it takes advantage of individual learners like CNN 

and GRU, outperforming isolated models. The proposed DCNN-BiGRU is an optimized solution from an industry 

perspective as it is suitable for network and system administrators to deploy; it requires fewer resources than other 

homogeneous models. Although DCNN-BiGRU performed very well on the current dataset, there is always a scope for 

improvement in terms of memory and time complexity, which can be improved by using multiple techniques. The 

limitations of this study are that the performance may degrade when the data have long-term dependencies The proposed 

system has a slightly high training time in comparison to other models, despite being more accurate. A further merger with 

other suitable optimization or feature-reduction techniques can improve the achieved accuracy. 

 

Availability of supporting data: Below are the links where datasets are available. The datasets generated and/or analyzed 

during the current study are not publicly available owing to [security reasons] but are available from the corresponding 

author on reasonable request. Data will be made available on request. 

For CIC-DDoS2019 URL: https://data.mendeley.com/datasets/ssnc74xm6r/1 
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