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In this paper we formulate the real-life chemical towers construction project as a dynamic resource constrained project 
scheduling problem (DRCPSP) with minimum makespan. Unlike the traditional resource constrained project 
scheduling problem, the DRCPSP model is able to consider both independent and dynamic resources which depend on 
the welding jobs processing sequence (JPS) of the major cylindrical columns components. A modified genetic 
algorithm with auto-shift mechanism (GAASM) is proposed to search for the optimal solution. A real-life example is 
presented to demonstrate the applicability of GAASM as well. Simulation experiments of eight illustrative problems 
with 30 runs show that GAASM outperforms the conventional GA based method (GABM). Furthermore, from eight 
groups with a total of 240 problems comparing two common rules, namely Top-down and Bottom-up rules, adopted in 
the current company plans (CP), GAASM demonstrates 5.09% ~ 14.60% average reduction in makespan successfully. 
 
Significance:  In the DRCPSP model, the resources characteristics are not only independent but also dynamic, which 

depend on the processing sequence of jobs. The proposed GAASM solution method of DRCPSP can 
be applied in practice for optimizing chemical towers construction project scheduling. 
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1. INTRODUCTION 
 
   Chemical towers are usually used in petroleum refineries, petrochemical and chemical plants and natural gas 
processing plants. The chemical towers can be classified by function as distillation column, reaction column, extraction 
column, absorption column, and washing column, etc. In practice the procedure of a chemical towers construction 
project includes data sheets provided by the process, detail design, material purchasing, and the tower to be fabricated 
in shop, to be transported and installed in the site. A typical industrial distillation tower operating system and a flow 
diagram of a chemical towers project are illustrated as Figure 1. In this paper we focus on the scheduling of tower 
fabrication and its assembly in the shop. 
   Normally a tower is composed of two heads (the top head and bottom head), shell and skirt. Industrial chemical 
towers are typically constructed in large, vertical cylindrical columns with diameters ranging from about 1meter to 5 
meters and heights ranging from about 10 meters to 50 meters or more. Therefore the main structure of the shell is 
assembled by welding with several cylinder layers made by steel plate. The internal of section usually has a tray 
support ring, tray, distributor or other accessories in each layer. The specification for each layer of the shell is different. 
Each part of the layer before being assembled has to be fabricated individually. The main jobs of producing the tower 
are to fabricate and assemble all of the parts.  
   In a plant construction project the fabricated makespan of chemical towers is very important, as it will impact the 
total duration and cost. The makespan of scheduling and cost are the key factors of project performance. But the related 
work has received little attention in the literature. Companies fabricate the towers always following their experiences or 
company rules. However these experiences or company rules may not be the optimal solution. How to derive an 
optimal solution of scheduling for minimum makespan is an important goal for a manufacturing company. 
   The optimal scheduling problem for chemical towers construction project is similar to the resource-constrained 
project scheduling problem (RCPSP) as found in the literature, but the material resources of fabricating require the 
parts which are independent resources, the material resources of assembling need the parts for assembling which are 
dynamic resources based on the assemble sequence. The characteristic of resources is not only independent but also 
dynamic, and it is unlikely to be only independent in the RCPSP.  
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Figure 1. A typical industrial tower operating system and project flow diagram 
 
 

   The RCPSP is a classical problem. The related research has expanded greatly over the past few decades, e.g. 
(Sawski et al., 1997; Nudtasomboon et al., 1997; Brucker et al., 1998), and excellent reviews can be founded in 
Herroelen et al. (1998) and Brucker et al. (1999). In recent years, several effective algorithms for solving the RCPSP 
have been investigated continuously. Hartmann and Kolish (2000) evaluated the performance of several state-of-art 
heuristics for RCPSP from the literature, and analyzed the behavior of the heuristics with respect to their components. 
Abeyasingehe et al. (2001) presented an efficient method for construction projects scheduling. Zamani MR (2001) 
described a high-performance exact algorithm based branch and bound method. Heilmann (2003) developed an exact 
procedure for a general RCPS where multiple modes are available for the performance of the individual activities and 
minimum as well as maximum time lags between the different activities may be given. Brucker and Knust (2003) 
presented a destructive lower bound for the multi-mode RCPSP with minimal and maximal time-lags. Bouleimen and 
Lecocq (2003) used a new simulated annealing for RCPS and its multiple mode versions. Carlier et al. (2003) proposed 
efficient methods for RCPSP based on makespan lower bounds, which linearly depend on the processing times of the 
activities. Valls et al. (2003) presented a new meta-heuristic algorithm. Kim et al. (2003) used a hybrid genetic 
algorithm with fuzzy control for RCPSP. Fleszar et al. (2004) implemented a heuristic based on a variable 
neighborhood search. Kim et al. (2005) proposed a hybrid genetic algorithm with fuzzy logic controller. AL-Fawzan et 
al. (2005) introduced the concept of schedule robustness, a bi-objective resource-constrained project scheduling model 
and developed a tabu search algorithm for this problem. Debels et al. (2006) proposed a new meta-heuristic with hybrid 
scatter search/electromagnetism. Tseng and Chen (2006) proposed a hybrid metaheuristic method. Valls et al. (2008) 
proposed a hybrid genetic algorithm. 
   The RCPSP can be classified by resource categories, types, and values. The resource category is described in 
greater detail see Heilmann (2003). However these kinds of resources requirements for the above related works are 
independent with jobs scheduling. In this paper on chemical towers construction project scheduling with dynamic 
resource constraints problem, it is the RCPSP with resource constraints that depends on the jobs processing sequence 
(JPS). We extend this problem as a dynamic resource-constrained project scheduling problem (DRCPSP) which has not 
have much research thus far. In DRCPSP, the JPS of project scheduling will affect the resources required. For example, 
three parts, say parts , ,  are assembled to become one product in the construction project. Two assembling jobs 
need to be done. Job  is to assemble parts  and  ,  is to assemble parts  and . Suppose the JPS is 
( , ), then the required resources by . After  is finished, part  is a semi-finished 
product, and . If the JPS is changed to ( , ), then the resource required by , 
and . Obviously, different JPS will have different resource requirements for the same activity. 
Required resources depend on project scheduling.  
   The DRCPSP for a chemical towers is stated and formulated in the next section. Section 3 proposes a mathematical 
model. The modified genetic algorithm with the auto-shift mechanism for solving DRCPSP is introduced. In Section 4, 
a real-life example demonstrates that the GAASM algorithm is feasible. In Section 5, computational experiments 
present the results of comparing the GABM and company plans. The conclusion follows in Section 6. 
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2. PROBLEM STATEMENTS AND FORMULATION 
 
2.1 Notations  

 The number of chemical tower parts 
 The set of jobs  and are dummy 

 The index of jobs number,  
 Processing sequence of job , (Decision variable) 

 Processing sequence  whose job is ,define  

 An array of jobs, which is ranked by JPS . 
 The set of chemical tower parts required by activity  

 The set of precedence jobs for job  

 The set of parts  

 The used number of construction teams  
 The maximum available number of construction teams 
 The set of construction teams,  

 Processing job  done by team  

 The set of conflict parts for job  
 The construction team assigned to processing job  , define = ,  

 Start time of job  

 Duration of job  
 Finish time of job  

 The set of jobs schedule  
 The set of jobs work in process at moment , 

 
 
2.2 Problem Statements 
   A chemical tower consists of  parts. There are  jobs that need to be done. The jobs can be divided into 
two portions. The first portion of the job is to fabricate the  parts of the chemical tower. The number of first portion 
jobs is . The second portion of the job is to assemble the  parts. The number of second portion jobs is . The 
jobs of and  are the precedence of job , therefore and  jobs have to be finished before job 
starts to be worked, where .  
   To process the project requires renewable resources of construction teams consisting machines and manpower. The 
maximum available resources of the construction teams are  teams. All jobs can be assigned to any construction 
team . Besides construction team resources, the resources of parts are required. All tower parts 

cannot to be exchanged with each others during their assembly, since the thickness of the steel plate and 
accessories for each layer part is not the same. The first portion for fabricating jobs needs the resource of material part 

for the  activity. The second portion for assembling jobs basically needs the resource of parts  and for 
the  activity. It is at this point that the dynamic resources required problem occurs. Suppose the start time of 
the  activity is earlier than the activity, where . While the  activity has been finished by 
assembling parts  and . The  activity needs parts  and  But part has been combined 

with part . To perform the  activity, the resources required will be forced to become , and . In 
other words, the dynamic resources required by the second portion jobs depend on the JPS. The dynamic resources 
required, base on activity sequence, is the main significance compared to RCPSP. The diagram of the precedence and 
dynamic resource relations for the DRCPSP is illustrated as Figure 2. 
   The duration of activity is denoted by . The start time and finish time of activity  is  and  
respectively. Define and stands for the start time and finish time of the project. The duration of 
activities for fabricating and assembling parts are given. The objective is to find a feasible schedule, and the makespan 
is the minimum.  
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Figure 2. The precedence and dynamic resource relations for DRCPSP 
 
 
2.3 Mathematical Model 
The model of DRCPSP for chemical towers construction project scheduling is formulated as below. 

 … (1) 

   

 … (2) 

 … (3) 

 … (4) 

, where ,  … (5) 

P(J j ) = pj , pj+1{ }∪ px  x ∈Pj{ }  ∪ py  y ∈Pj+1{ }  ,  j = n +1,  n + 2,  ...,   2n −1  … (6) 

, 

where  ,  

… (7) 

, 

where  ,  

… (8) 

   Objective function (1) is to minimize the maximum of the finish times . Inequality (2) (3) are the 

precedence constraints of the start time for . Equation (4) is the parts of independent resource 
required constraints. Inequality (5) is the parts constraints, none of the parts can be exchanged with each other. 
Equation (6) is the parts of dynamic resource required constraints. In equation (7), the parts resource required cannot be 
in conflict during the same period of time. Equation (8) is the resources constraints of the construction team, and it 
shows one construction team cannot be assigned to do more than one job simultaneously. 
 
2.4 Problem analysis 
   The RCPSP is a NP-hard problem (see Blazewicz et al., 1983). As a RCPSP, the DRCPSP is NP-hard too. The 
optimal solution cannot be derived directly. In the DRCPSP model, the parameters and  are given for 



Lin and Hsiau  

 132 

the construction project. To search for the optimal solution of minimum makespan for this problem, five steps are 
considered in the Main Algorithm. 
 
Main Algorithm 
Step A. To obtain an array of feasible job sequence , . The array of the feasible job sequence has 

to satisfy constraints (2) (3). 
Step B. To compute the dynamic resources of parts required by , , based on . The results have 

to satisfy constraints (4) (5) (6). 
Step C. Assign each job to construction team based on constraints (7) (8) and compute the makespan . 
Step D. Objective function fitness test. If fitness is satisfied, then stop, else go to Step E. 
Step E. To obtain a new array  of feasible job sequence, go to step B. 

      
In the Main Algorithm, suppose can be obtained from the Step A, then the steps from Step B to Step E can be 
solved. 
 
2.5 Company Plan Rules 
In Step A of the Main Algorithm, there are two types of assigning job rules mostly used by the company plan (CP) to 
derive an array of feasible jobs sequence . The two types of company plan rules are represented by CP1 and CP2. 
 
 CP1: Top-down. The JPS is allocated by descending the index of job number . In the first portion with a single part, 

assigning the jobs from to  by descending the index of job number . In the second portion with assembled 
parts, assigning the jobs for assembling from to  by descending order. The computing procedure is shown 

as Algorithm CP1.  
 
Algorithm CP1 : Assign jobs sequence by Top First 
Input: .  Output: Feasible of CP1 
Step 1. Set     

Step 2. Set  

Step 3. If then go to step 4, else output and STOP. 

Step 4. If  then set , else go to step 5. 

Step 5. If  &  then set and go to step 6, else go to step 7. 

Step 6. If  then , else go to step 5. 

Step 7. Set , go to step 3. 
 
 CP2: Bottom-up. To allocate the JPS is similar to CP1, but the job sequence is assigned by ascending the index of 

jobs number . The computing procedure is shown as Algorithm CP2. 

 
Algorithm CP2 : Assign jobs sequence by Bottom First 
Input: . Output: Feasible of CP2 
Step 1. Set     

Step 2. Set  

Step 3. If  then go to step 4, else output and STOP. 

Step 4. If then , else go to Step 5. 

Step 5. If  & , then and go to step 6, else go to step 7. 

Step 6. If  then , else go to step 5. 

Step 7. , go to step 3. 
 

   The results of the JPS for makespan of scheduling planned by company rules are feasible, but they may not be 
optimal. In this paper we propose a modified genetic algorithm with the auto-shift mechanism (GAASM) to solve this 
problem. 
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3. MODIFIED GENETIC ALGORITHM 
 
3.1 Algorithm Overview 
   The genetic algorithm (GA) is a search technique which is used in computing to find exact or approximate solutions 
for optimization and search problems. The general procedure for GA was developed by Goldberg which has been 
widely applied to flow shop scheduling (e.g. Ibrahim et al. 2008) and project scheduling in the literature. But they have 
to face the problems of infeasible schedules that might be produced by genetic operations. The chromosome may need 
modification to ensure that project scheduling is feasible. If GA were applied to jobs in DRCPSP, the same 
difficulty will occur too. In general genetic operations, chromosomes are randomly selected from the population to 
perform either crossover or mutation. The offspring produced by a genetic operation may represent an infeasible 
schedule due to precedence relations. In this problem, the possible solutions space of random chromosomes will have 

 types. The feasible solutions of chromosomes will have types. For example, for  parts, 

the possible chromosomes will have 19! = types, including feasible and infeasible types. The infeasible 
scheduling problem exists, too. The genes of infeasible chromosomes need to be reordered to satisfy the precedence 
constraints. 
   In Step A of the Main Algorithm, a feasible array  ranked by JPS should be satisfied with constraints (2) (3). 
For example, if =5, =[2 3 5 7 1 6 4 8 9] is feasible, =[7 2 3 5 1 6 4 8 9] is infeasible because and  are 
the precedence jobs of . In this paper the proposed GAASM method can derive the array of feasible job sequences 

 for finding the optimal solution, and the structure of algorithm is illustrated in Figure 3. 
  

 
 
 

Figure 3. The structure of GAASM Algorithm 
 
 
3.2 Solution Encoding and Population Initialization 
   The most frequently used encoding for the RCPSP is a permutation of the activities. The relative order of the 
activities in the permutation represents the JPS of the activities by the machines or construction teams. A chromosome 
represents a solution to the problem and is composed of  genes, where is the number of activities without 
dummy jobs. 

, where .  
The genes of chromosome are used as construction priorities of activities, i.e., the priority of activity is , and 

. The possible scheduling solution space of chromosome, including feasible and infeasible, will have 

 combination types of genes. 
   Traditionally, in a GA, the initial population is generated randomly. In this problem, the initial populations are 
generated by randomly allocate the integer genes from 1 to . But the generated chromosomes randomly are not 
guaranteed feasible due to the resource constraints and the precedence of activities. The randomly allocated genes in 
chromosome have to be checked and reorder by Algorithm 1 in section 3.3 to ensure the solution is feasible. 
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3.3 Genes Reordered   
   If the job sequence of , is smaller than the sequence of  or , then the job has to be 
moved behind the  and  for satisfying the precedence relations. To ensure the chromosomes is feasible, 
the Algorithm 1 is used to check and repair the infeasible chromosome to make it a feasible one. 
 
Algorithm 1  Chromosomes check and reorder 
Input: Random chromosome .  Output: Feasible  
Step 1. Set     

Step 2. Set  

Step 3. If  then move the  in a random position between ,else go to step 4 

Step 4. If then output , else , go to step 2. 
 
3.4 Crossover 
   The crossover operation produces new sequences of offspring by exchanging two other permutations of the parent. 
The purpose of crossover is to generate a better offspring for the objective function. In this paper, we apply the method 
similar to Goldberg's Partially Mapped Crossover Method.  
   Through exchanging two permutations of the parent, the genes might be repeated or missing. For RCPSP or 
DRCPSP, the gene of jobs is unique. If crossover is operated, genes need to be checked and repaired for new offspring 
to avoid being repeated or missing. In order to keep the better chromosomes, the Roulette Wheel Selection method is 
used. In the general GA crossover operation, parents are selected according to their fitness. The better the chromosomes 
are, the more chances to be selected they have. The size of the selection section in the roulette wheel is proportional to 
the value of the fitness function of every chromosome. If the fitness value is better then the selection section is larger. 
   After crossover operation, new chromosomes have to be reordered to ensure the chromosome is feasible by using 
Algorithm 1. The modified crossover method is shown in Algorithm 2 and an example of crossover is illustrated in 
Figure 4.  

 
Algorithm 2  Modified Crossover 
Input: Chromosomes of parents  
Output: Chromosomes of children  

Step 1. Select the crossover genes length of chromosome by Roulette Wheel Selection method.  
Select start crossover position  for parents between at random. 

Step 2. Exchange two crossover genes between parents to produce proto-children and from start 

position. 
Step 3. Determine the mapping relationship between two crossover genes. 
Step 4. Legalize offspring and  with the mapping relationship to make sure the genes is unique in a 

chromosome, obtain the legal children and  . 

Step 5. Reorder and  by using Algorithm 1, the results are and  

 
 [ 1 6 9 4 5 8 7 15 2 3 10 17 13 16 19 12 11 18 14 ] 

 [ 2 7 10 4 3 8 1 13 17 5 12 6 11 9 16 19 14 15 18 ]  

[ 1 6  9 4 3 8 1 13 17 5 12 6 11 9 19 12 11 18 14 ] 

[ 2 7 10 4 5 8 7 15 2 3 10 17 13 16 16 19 14 15 18] 

 [ 7 2 16 4 3 8 1 13 17 5 12 6 11 9 19 15 10 18 14 ] 

 [ 6 1 11 4 5 8 7 15 2 3 10 17 13 16 9 19 14 12 18] 

 [ 7 2 4 3 8 1 13 17 5 12 6 11 9 15 10 18 19 14 16] 

 [ 6 1 4 5 8 7 15 2 3 10 17 13 16 9 19 14 12 11 18] 
 
 

Figure 4. An example of modified crossover operation with 19 genes, ,  

 
 
3.5 Mutation 
   A mutation operator in GA is used to avoid the convergence to local optimum and to reintroduce new combination 
of genes in the population. By mutating a chromosome, the sequence of genes will be slightly changed. In the literature 
there are basically three different mutation methods: 1) SWAP, 2) POSITION and 3) SHIFT. In this paper, we apply 
the SHIT mutation operator, since this method outperforms the other two methods (see RUIZ et al. 2006). The SHIFT 
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mutation is to pick position  randomly and relocated it to another randomly picked position . The activities 
between these two positions move along. After the mutation operation, the chromosome  needs to be repaired by 

using Algorithm 1, and the result is denoted . We proposed the Roulette Wheel Selection method to be applied to 
mutation. The mutation rate in the roulette wheel is proportional to the value of the fitness function of every 
chromosome. The better the fitness value is, the larger the gene mutation rate is. For example, suppose there are two 
chromosomes, the fitness value sequence  is better than . The better chromosome  is to be mutated 
into two genes, the other is one gene. Two examples of mutation operation results are illustrated in Figure 5. 

 
 [ 7 2 4 3 8 1 13 17 5 12 6 11 9 15 10 18 19 14 16 ] 

  [ 7 2 4 3 1 13 17 8 5 12 6 11 9 15 10 18 19 14 16 ] 

  [ 7 2 4 3 1 13 8 5 12 6 11 17 9 15 10 18 19 14 16 ] 

 [6 1 4 5 8 7 15 2 3 10 17 13 16 9 19 14 12 11 18 ] 

  [6 1 4 14 5 8 7 15 3 10 17 13 16 2 9 19 12 11 18 ] 

  [6 1 4 5 14 8 7 15 3 10 17 13 16 2 9 19 12 11 18 ] 
(a) One gene mutation  (b) Two genes mutation  

 
Figure 5. An example of mutation with 19 genes 

 
3.6 Dynamic Resources Required 
   In Step B of the Main Algorithm, suppose  is obtained from Step A , then before computing 
makespan, dynamic resources have to be computed to ensure the schedule is feasible. The dynamic resource of parts 

required by , , based on  can be computed by Algorithm 3 . 

Algorithm 3.  Computing required sources of parts base on JPS 
Input: , .  Output:  

Step 1. Set     
Step 2. Find  

Step 3. If  then , ,  

else , , , 

, ,  

Step 4. If  then output , else  go to step 2. 
 

Example: Given and , the resources required for each job can be computed, and the 
results are as below.  

, .  
 

3.7  Local Search Procedure 
   When a chromosome is obtained by GA initialization or evolution, the makespan of objective function can be 
evaluated. The approach of computing makespan by using the genetic algorithm based method is defined as GABM. 
The staring time of each job by GABM has to follow the job precedence of genes in the chromosome. The starting time 
cannot violate the constraints: 

 
The procedure of computing makespan by GABM is illustrated in Algorithm 4. 
Algorithm 4  Assigning each job to a construction team and computing project makespan by GABM 
Input: , , .  Output:  

Step 1. Set ,  

Step 2. Find  

Step 3.  

Step 4. If  then , , 

else ,  

Step 5. ,  

Step 6. If  then output the makespan , else  go to step 2. 
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   In this paper we propose the genetic algorithm with automatic shift method (GAASM) to improve the scheduling 
and makespan from the GA based solution. In Step C of the Main Algorithm, if the value of , , , 
where are given, then assign each job to a construction team base on constraints (4) (5) and then 
compute the makespan  by using Algorithm 5. The main improvement of this algorithm is the shifting of the 
succeeding job sequence to become the precedence job and change the jobs sequence when and are 
available. After computing, the makespan and a new offspring can be obtained.   

  Algorithm 5 Assigning each job to a construction team and computing project makespan by GAASM. 
Input: , , .  Output: , New  

Step 1. Set ,  

Step 2. Find  

Step 3.  

Step 4. If  then , , 

else  ,  

Step 5. ,  

Step 6. If  then go to step 7, else  go to step 2. 
Step 7. Output makespan  and compute a new as offspring by ranking the start time of . 
   Step D of the Main Algorithm is used to create an objective function and do the fitness testing with makespan 
which is obtained by Step C. If fitness is satisfied, then stop. Otherwise, go to Step E to get a new feasible array of , 
and then repeat Step B. 

 
4. A REAL-LIFE EXAMPLE 
 
   A petrochemical splitter tower was designed to serve the recovery propylene fluid of refinery plant. Its design 
pressure is 16.7 kg/cm2G with full vacuum, and design temperature is 65 0C. The total height is 47600 mm and internal 
diameter is 4300 mm. It is made by one top head, one bottom head, fourteen cylinder layers of shell with individual 
steel plate     thickness (22mm~40mm) and internal components, and four layers of skirts with different size and 
sharp. Therefore, the number of unit parts n is twenty. Each unit part ( ) has its specific components 
including inlet/outlet nozzles, tray supports and accessories, and can be manufactured individually. The manufacture 
jobs of unit parts are represented by the set of . The manufacture job of each unit part includes steel 
plate cutting, forming, grinding, welding, accessory parts installation and non-destructive (NDE) testing. Beside the 
manufacture jobs, all unit parts need to be assembled together. The set of assemble jobs are . The 
assembly job of each unit part includes unit parts assembling, welding and NDE testing. The set of total project jobs 
can be represented by . Each job is processed by a construction team which needs three 
workers, a set of automatic welding machine and other accessory equipments. The number of available construction 
teams is five teams. The set of construction teams is . The set of job duration which is considered 
by project manager base on work volume for each job , is ={ 40, 33, 17, 16, 14, 
20, 25, 18, 30, 27, 40, 31, 23, 37, 33, 37, 17, 33, 31, 15, 13, 31, 35, 11, 37, 20, 40, 29, 20, 33, 37, 14, 35, 16, 25, 20, 13, 
29, 11} days. The goal is to find the optimal scheduling and minimum makespan. 
   The project manager used the existing methods of the company plan rules CP1 and CP2 to plan the job process, the 
makespan were obtained as days and days. If proposed GAASM method is 
employed, the minimum makespan is days, and the improvement rate compared with CP1 and 
CP2 is 10.89% and 9.49% individually. The optimal JPS can be derived, and the result is = [7 9 10 11 13 16 4 15 14 
30 17 19 6 8 34 5 28 2 35 25 18 3 1 12 37 23 26 38 27 31 21 33 22 20 39 29 36 24 32]. The dynamic resources required 
for activities , are shown in Table 1. The optimal solution of job starting time , finished 

time and assigned construction team  for each job are summarized in Table 2. The optimal scheduling of the 
network for project and Gantt-Chart are illustrated in Figure 6 and Figure 7.  
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Table 1. Computing results of the dynamic resources 
 

    

    
    
    
    
    
    
    
    
    
    

 
Table 2. The results of the optimal solution 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 7 9 10 11 13 16 4 15 14 30 17 19 6 8 34 5 28 2 35 25 

 1 2 3 4 5 5 1 3 2 4 1 1 3 5 2 4 5 3 2 4 

 0 0 0 0 0 23 25 27 30 40 41 58 60 60 67 73 78 80 83 87 

 25 30 27 40 23 37 16 33 37 33 17 31 20 18 16 14 29 33 25 37 

 25 30 27 40 23 60 41 60 67 73 58 89 80 78 83 87 107 113 108 124 
 

 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

 18 3 1 12 37 23 26 38 27 31 21 33 22 20 39 29 36 24 32 0 

 1 5 2 3 1 5 4 1 4 3 2 5 2 1 1 4 5 4 4 0 

 89 107 108 113 122 124 124 135 144 144 148 159 161 164 179 184 194 204 215 229 

 33 17 40 31 13 35 20 29 40 37 13 35 31 15 11 20 20 11 14 0 

 122 124 148 144 135 159 144 164 184 181 161 194 192 179 190 204 214 215 229 229 

  

 
Figure 6. Network of project with minimum makespan 
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Figure 7. The Gantt-Chart of optimal scheduling 

 
5. EXPERIMENT AND RESULTS 
 
   Two types of experiments are designed to test the performance of proposed GAASM. One is to compare the 
performance of GAASM with the genetic algorithm based method (GABM). Another is to compare the performance of 
GAASM with the company plan (CP) rules. In the simulation environment of these experiments, three factors of , 

 and  are considered. Each factor is clarified into two levels. The number of jobs  has the lower level 19 and 
the higher 39. In other words, the parts of  for the lower level are 10 and 20 for the higher level. In practice the size 
of a  shell plate for tower designed to be used mostly is 8’x 30’ (height 2420 mm x width 9100 mm), the applied 
heights of parts can reach to 48.4 meters which covers most of the towers height in the petrochemical industry. 
The maximum available number of construction teams is set so that the low level is 3 and the high is 5. The durations 
of jobs are randomly generated in [10, 20] for the low level and in [10, 40] for the high level.      
 
5.1 The Comparison of GAASM and GABM  
   Eight problems are designed to test the performance of GAASM and GABM. The experimental factors and levels 
of comparison for the problem are set as Table 3. The GA operation parameters for GAASM and GABM are set as: 
population size 30, probability of crossover 0.6, probability of mutation 0.1 and maximum generation is 300. Each 
problem runs 30 times by GAASM and GABM. The results of the makespan obtained by GAASM and GABM are 
shown in Table 4, and the makespan obtained by GAASM is much better than by GABM obviously. Define the 
GAASM better (%) = (makespan of GABM－makespan of GAASM)/ makespan of GABM 100%. The GAASM 
better rate is between 13.67%-41.51%. When any level of three factors is high, the better rate of the GAASM is 
increased. 

Table 3. Factors and levels of experimental problems 
 

Problems P1 P2 P3 P4 P5 P6 P7 P8 
Number of jobs 19 19 19 19 39 39 39 39 

Number of teams 3 3 5 5 3 3 5 5 
Range of jobs duration [10,20] [10,40] [10,20] [10,40] [10,20] [10,40] [10,20] [10,40] 

 
Table 4. Comparison of the makespan by using GAASM and GABM 

 
Problems P1 P2 P3 P4 P5 P6 P7 P8  

Mean 106.1 79.63 174.6 130.2 206.4 140.2 350.1 236.0  
Std dev 0.305 1.159 0.928 1.305 0.504 1.157 1.147 2.767  
Max. 107 81 176 133 207 142 352 243  GAASM 

Min. 106 78 173 127 206 137 348 229  
Mean 122.9 115.6 207.9 195.5 254.0 227.7 446.7 403.5  

Std dev 3.166 3.654 4.097 6.892 4.556 4.591 8.582 11.89  
Max. 129 120 216 206 261 235 458 422  GABM 

Min. 117 108 199 183 242 217 428 378  
GAASM 
better (%) Mean 13.67 31.11 16.01 33.40 18.74 38.42 21.62 41.51  

 
5.2 The Comparison of GAASM and CP 
   Eight groups with 240 problems are designed to test the performance of GAASM and CP rules. Each group has 30 
problems. The experimental factors and levels for problems GP1-GP8 are set same as P1-P8 as shown in Table 3. Each 
problem generates the jobs duration information randomly from Table 5 with uniform distribution. The jobs sequence 
of company plan rules by section 2.5 are as follows. 
 Jobs sequence by company plan rule for 19 jobs 

CP1: = [1 2 3 4 5 6 7 8 9 10 11 13 15 17 19 12 16 18 14] 
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CP2: = [10 9 8 7 6 5 4 3 2 1 19 17 15 13 11 18 14 12 16] 
 Jobs sequence by company plan rule for 39 jobs 

CP1: = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 25 27 29 31 33 35 37 39 22 26 30 34 38 24 32 36 28] 
CP2: = [20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 39 37 35 33 31 29 27 25 23 21 38 34 30 26 22 36 28 24 32] 

   Define the GAASM improvement rate (%)=(makespan of CP－makespan of GAASM)/ makespan of CP 100%.   
The results of makespan improved by GAASM are shown in Table 5. The GAASM average improvement rate is 
between 5.09%－14.60% in 8 groups of problems. The GAASM outperforms CP1 and CP2. The improved rate of 
makespan is increased where the available construction team and the range of job duration are in high level. 
 

Table 5. The improvement rate of the makespan by comparing GAASM and CP with 240 problems 
 

Problems GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8  
Mean 10.2754 11.2801 12.7687 14.4675 6.0922 8.7233 8.214 11.6854  

Std dev 2.7116 2.7188 3.6208 4.9641 1.7918 2.1036 3.2255 4.8626  
Max. 14.9606 18.4466 19.8347 24.0838 9.5238 13.0435 13.8889 21.1268  

Better than 
CP1 (%) 

Min. 5.0000 5.5556 5.7971 5.0955 2.7778 4.7297 1.4749 1.7857  
Mean 9.8249 10.6163 11.7546 14.7465 4.1062 7.0938 7.0609 10.4753  

Std dev 2.4466 3.6086 4.2711 6.0628 1.5279 2.8007 2.9306 4.3950  
Max. 14.2857 17.8571 19.4805 24.000 9.1304 12.8049 13.889 22.4913  

Better than 
CP2 (%) 

Min. 5.2174 4.3478 0.5714 0.6623 1.8957 2.1429 1.8373 2.7132  
Average (%) Mean 10.0502 10.9482 12.2616 14.6070 5.0992 7.9086 7.6374 11.0803  

 
6. CONCLUSIONS 
 
   The chemical towers construction is the bottle neck activity in the entire construction project of a chemical plant. 
For some critical giant tower cases, the chemical towers have to be built before other facilities owing to the huge 
construction land space required. The shortening of the makespan of the chemical towers construction project is 
analogy to the vital cost savings of the entire chemical plant construction. In this paper we have developed a model of 
dynamic resource constrained project scheduling problem (DRCPSP) for the real-life chemical towers construction 
project. A genetic algorithm with auto-shift mechanism method (GAASM) is also proposed to generate optimal 
schedule with minimum makespan. The characteristics of resources in a DRCPSP model can be both independent and 
dynamic depending on the jobs processing sequences (JPS). This paper adopted both real-life and simulation problems 
to demonstrate the performance and applicability of DRCPSP with GAASM. The results from the real-life example 
show that the DRCPSP model with the GAASM solution method can demonstrate 10.89% and 9.49% improvement 
comparing with two existing company rules, Top-down and Bottom-up, respectively. On the other hand, the simulation 
experiments containing eight illustrative problems with 30 runs show that GAASM outperforms the conventional GA 
based method (GABM). Furthermore, from eight groups with a total of 240 problems comparing with two existing 
company rules show that GAASM can successfully improve the makespan with average 5.09%－14.60%. The 
simulation results show that GAASM is even more suitable while the available number of construction teams and the 
range of job durations are in the high level. For the project management administrators, this fruitful outcomes of this 
paper implies that the DRCPSP model with the GAASM method is both applicable and time-saving for the 
construction projects with independent and dynamic resource constraints. 
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