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Radio frequency identification (RFID) technology is used for asset tracking due to its accuracy and speed. RFID tracking 
systems are being used to locate tagged objects in indoor environments, however; reliability is low due to interferences. To 
overcome this limitation, artificial neural networks (ANNs) can be used to determining a device’s location in the proximity 
of interference. This research presents a proof of concept to an industrial application of using ANNs as an RFID 
localization algorithm when objects are subjected to metallic and human interference. To prove this concept, random 
samples are collected using the received signal strength indication (RSSI) values from passive RFID readers and antennas. 
The test results show that ANNs can determine the location of a passive RFID tag accurately in the presence of noise and 
shows that data preprocessing techniques can improve the predictive capabilities of the ANN-RFID localization algorithm.  

 
Significance: Research shows that passive tags are better suited for tracking items that are high volume, low cost, or have a 
short shelf life. A passive RFID tag system is explored in this research due to the inexpensive nature of the tags. Thus, there 
is a great potential for many industrial applications if advancements are made to increase the reliability of determining a 
tag’s location. Constructing an ANN-RFID localization algorithm is significant because ANNs are capable of predicting 
non-linear, noisy, or incomplete readings that are obtain from RFID antennas. These models can ultimately decrease the 
setup time needed to implement and increase the accuracy of a location system in the presence of noise. 
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1. INTRODUCTION 

 
Real-time location systems (RTLS) can be used for a variety of applications in manufacturing. For example, these systems 
can be used when material is being handled. The ability to tack an item’s location can ultimately give decision makers a 
way to control or to improve upon existing manufacturing systems (Zhou, Ling, & Peng, 2007). For example, the location 
of an object can monitored for enterprise resource planning (ERP) or warehouse management systems (WMS) in order to 
estimate work in process (WIP) levels, monitor logistical operations, provide information for supply chain management, or 
even to optimize inventory levels (Huang, Zhang, & Jiang, 2008). RTLS can be composed of various locations technologies 
that include radio frequency identification (RFID), global position systems (GPS), wireless fidelity (Wi-Fi), and barcodes 
(Ding, Chen, Chen, & Yuan, 2008). Current real-time location systems rely on pervasive wireless systems and/or active 
tags to determine a location of a tagged item. Consequently, due to the high cost of active tags and limitations of other 
technologies, such as the limited functionality of using GPS indoors, passive RFID tags can be used as a potential 
replacement for asset tracking since they are relatively low in cost for a manufacturing facility to implement into their 
current practice.  
   RFID is a form of information technology and is used because of its accuracy, speed, and omnipresence. RFID was 
initially developed in the 1940’s for military applications during World War II (Landt, 2001). Over the years, RFID 
applications have become more prominent due to the decrease in cost, and the increase of reliability. Today, RFID is being 
used in many applications that are both small and large in scale. For example, RFID is being used in manufacturing (Landt, 
2001), health care (Huang, Chung, Tsai, Yang, & Hsu, 2008), parcel retrieval and delivery (Faber, 2002), security (Lockton 
& Rosenberg, 2005), and even farming (Chen, Chen, Chen, & Chang, 2007). As history shows, as RFID technology 
improves and becomes more reliable and affordable, the applications have become increasingly abundant. 
   RFID is used to identify objects much in the same way barcodes are used to identify objects with an accompanying serial 
number; however, the major difference lies in the proximity of the system to the object and the need for line-of-sight of a 
tagged object to the reader or receiver. Thus, RFID can identify a tagged object almost instantaneously when the object near 
a visible line of sight of the identification system. The ability of an RFID system to identify an object quickly through a 
vision-obstructing surface gives an enormous advantage over barcode technology. With a customized RFID system, 
advances in the technology have allowed a location to be inferred along with the identification of the object using relative 
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signal strength indication (RSSI) values. The ability to identify and locate an object simultaneously provides increasingly 
useful information to those responsible for managing an asset’s location.   
   Being able to identify an object without requiring a direct line of sight provides information that can be monitored 
continuously. However, while this is still the major advantage over barcodes, RFID has its own limitations (Nikitin & Rao, 
9-14 July 2006). For example, most current applications using RFID technology determine if an object has passed through a 
specific gateways located about a manufacturing facility (Park, Choi, & Nam, Aug. 31 2006-Sept. 1 2006). This is used to 
determine the general location of the tagged object, but not the precise location of the object. In other words, location is 
only known in a general sense in relation to the series of gateways that are placed around the manufacturing environment 
(Song, Haas, & Caldas, 2007). This is because determining the precise location of a RFID-tagged item is difficult when 
there are interferences, which limits the accuracy of the RFID receiver. In order to overcome these limitations, the research 
presented in this paper utilizes a machine learning technique called artificial neural networks (ANNs) in order to determine 
a tagged item’s location in the presence of interference.  
   The location tracking system proposed in this research aims to provide an accurate low-cost adaptation to the current 
systems for products that are priced such that an active tag may be more expensive than the item to its applied. Thus, 
instead of attenuating the power sent to the antennas and determining distance by the mere identification of a tag at a certain 
power level as previous systems, the system proposed in this research estimates the location of the tag based on relative 
RSSI values extracted from the reader’s software. Finally, as the research will show, the proposed system it reduces the 
complexity of the design of the location tracking system by reducing the time involved in setup, troubleshoot, and 
maintenance in order to track an item’s location more precisely in the presence of noises.   

 
2. ACTIVE AND PASSIVE RFID SYSTEMS 

 
There are two main tag types found in RFID location systems. These tags types are either active or passive, which differ in 
the method by which the signal is transmitted to the received. In general, active RFID tags contain a battery that emits a 
signal that is are activated by the reader’s antennas, which is unlike passive tags that do not require a power source. The 
majority of the research found in literature address when passive or active tag are suitable for a certain applications. In other 
words, this work is dedicated to determine when a certain tag-type should be used based on evaluating the cost 
effectiveness of tracking assets. In general, these studies conclude that passive tags are more cost efficient for tagged items 
that are relatively inexpensive and that active tags are more efficient when dealing with assets that are relatively expensive 
in comparison to the cost of the tag. Active tags have a major advantage over passive tags in that they can be tracked over a 
much larger range than passive tags. However, these devices are often very costly and require a dedicated power supply, 
which can limit the functionality of the tag. Therefore, passive tags, which are often smaller, are attractive for a 
manufacturing facility to purchase an implement because they do not require a recurring cost.  
   Though active tags provide a good solution for problems dealing with obstruction or interference, they are cost productive 
for most applications. Since passive RFID tags are expendable, they have made their way into a variety of nontraditional 
applications. For example, certain construction projects have used a passive-location system to locate non-metallic items 
that are hidden beneath the ground (Dziadak, Sommerville, & Kumar, 2008). In addition, passive RFID systems have also 
been used to aid visually impaired pedestrians in order to navigate through larger buildings such as airports or offices 
(Kulyukin, Gharpure, Nicholson, & Osborne, 2006). Therefore, there is a need to improve upon the capabilities of using 
passive tags in industrial settings, which ultimately increase location accuracies and decrease the cost and time required to 
develop a robust location-system. This study presents research that utilizes the non-linear modeling characteristics of 
artificial neural networks (ANN) to estimate a tagged item’s location given interference.  

 
3. ARTIFICIAL NEURAL NETWORKS 

 
RSSI values have been used in location systems to predict location (Seshadri, Zaruba, & Huber, 2005); however, most of 
them use prediction methods such as triangulation or trilateration, which are based on time difference of arrival or time of 
flight calculations (Hightower & Borriello, August 24, 2001) (Caron, et al., 2007). The premise of this research is to use the 
functionality of the Alien® RFID Developer’s kit to derive a mathematical model that estimates a device’s location given 
an RSSI value as an input. Thus, a machine learning method called  artificial neural networks (ANN) will be used in this 
research to model the location of an RFID devise.  
   Machine learning is a form of artificial intelligence that is stochastic, which utilizes learning algorithms optimizes the 
parameters of a mathematical model through extensive training (Alpaydin, 2004). The mathematical model generated in 
this research provides an accurate estimation of the location of the tagged object using real-time RSSI information. In this 
experiment, a location system is created and tested in an empty space, where the tagged items are  subjected to static 
interference from metal and human sources. This strategy was implemented in order to create a more realistic indoor 
environment to test the capability of an ANN’s ability to predict the location of tagged object in the presence of noise 
(Mohammadi & Ailani, 2007). This procedure is significant because an ANN-RFID location system can ultimately improve 
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the reliability in determining a tagged item’s location as well as reducing the setup time required to implement a location 
system in a new facility. Predicting the location of an item location with an ANN is also significant because not all readings 
are needed from local antennas to make a prediction. In other words, other location methodologies require readings from all 
available antennas to determine a device’s location as well as time elapsed information. ANNs are well known for their 
ability to generalize a system. Thus, they are capable of deriving a predicting with noisy or incomplete data. It is for this 
reason that ANNs are more suited for non-linear predictions with missing values than multiple linear regression models 
(Kumar, Rao, & Soni, 1995) (Brey, Jarre-Teichmann, & Borlich, 1996) (Young, Weckman, Thompson, & Brown, 2008). 
To support this claim, a comparison of multiple linear regression will be made to the predictability of an ANN for locating 
RFID tagged items with interference and a high likelihood of inconsistent antenna readings.  
   Despite many ANN methodologies, this research focuses primarily on the use of the multilayer perceptron (MLP) 
classifier networks. The multilayer perceptron is a feed-forward network that utilizes back-propagation to execute training 
across multiple layers (Principe, Euliano, & Lefebvre, 1999) (Vapnik, November 1999). These models can employ second 
order conjugate gradient learning rules, which are well suited to learn non-linear systems (Hestenes & Stiefel, 1952). Thus, 
it is proposed that this feature, paired with the ability of an ANN to model noisy data, has potential to create a robust, cost 
efficient RFID location tracking system. 

 
4. LOCALIZATION ALGORITHMS 

 
A localization algorithm is a mathematical model that estimates the position of an object given input data such as signal 
strength, distances, or angles. Location tracking systems use varying methods of prediction regardless of the technology 
used to collect information. The potential for RFID systems to predict the location of an object depends on the method of 
inferring distance, which varies among the existing location systems. One way to estimate signal strength with RFID tags is 
to attenuate or lower the power level of the antennas in order to find the power levels at which a tag can be read in order to 
estimate a perceived distance (Hodges, Thorne, Mallinson, & Floerkemeier, 2007). Alternative methods employ the use of 
mobile readers and passive reference tags that rely on random sampling to provide the algorithm with information for 
prediction (Xu & Gang, 17-19 Jan. 2006). Aside from the switch to passive tags, the system presented in this research 
predicts the location of the tag based on RSSI values rather than varying the power levels of the antenna to estimate a 
position. In addition, there are not multiple access points to triangulate position as used in current Wi-Fi systems (Ding, 
Chen, Chen, & Yuan, 2008). Thus, the experiment preformed for this research application consists of estimating a tag’s 
position given four RSSI values that are extracted from a fixed-position reader in a test space.  

   
5. INDUSTRIAL APPLICATION  

 
The system proposed in this research consisted of an Alien 9900 915 MHz RFID reader, four circular Alien antennas, and 
an Alien squiggle tag, which are considered Class 1, Generation 2 tag types. Ohio University’s Automatic Identification 
and Data Capture Laboratory provided the RFID equipment used in the data collection for this research. The system 
proposed aims to predict the location of a tagged object in an indoor space with varying static sources of interference. The 
development of the system necessitates the completion of an initial site survey to collect data with a tagged object located 
in different coordinates. This data consisted of a relative signal strength value from each of four antennas and the 
corresponding ‘x’ and ‘y’ coordinates of the measured location of the tag. This data is subsequently partitioned into 
training, cross-validation, and testing data subsets for the creation of an ANN model. In addition, RF interference is 
introduced based on the absorption and reflection from human and metallic sources. This noise is introduced to the system, 
which is tested in four total arrangements. Ultimately, a localization algorithm that is extracted from the ANN provides an 
‘x-y’ prediction of the location of the object for the various positions in order to assess the ability of the system to predict 
the location within the presence of noise.  

 
5.1 Test Space 
The system proposed in this research was designed for a space with square sides that are approximately 20 ft. on each side. 
This distance was due to the constraining length of the coaxial cord and the read range for most passive tags. For a space of 
this size, the standard issue wire connectors for the Alien antennas are capable of creating up to a 20 ft. square without 
stretching the wire connectors excessively. A square space with no obstacles initially supplied both a good benchmark for 
data collection and an opportunity to examine the arrangements of the antenna to determine the reading capability of 
available tags by evaluating the consistently of their read rates and over the location space.  
   For the experiment, tags were suspended above the ground on a PVC stand at the same height as the antennas to ensure 
that they were on the same plane. Before testing began, locations were generated randomly which covered the entire test 
space. From these generated locations, random locations were drawn without replacement in order to determine which 
locations would be used for testing the ANNs ability to model an RFID’s location. Figure 1 depicts the randomly 
determined test space that has an origin of (0, 0), which refers to the lower left corner. Thus, the figure shows the randomly 



RFID Localization System  
 

 19 

selected tag locations that will be used to collect the data for this investigation. It should be noted that this arrangement was 
not only used to model an RFID’s location without the presence of interference, but it was also used in later in the 
experiment to determine the ANN’s capability of determining a devices location with metallic and human interferences.  

 
 

 
 
 

Figure 1.  Orientation of Test Space 
 
 

   The data was collected using custom software that logs a RSSI value from each antenna and links it to the measured 
location of the tag in the grid in terms of an ‘x’ and ‘y’ coordinates. Throughout the experiment, tags were manually moved 
to a new location and their position was recorded. After the tag was transferred to the new location, the software was then 
used to record the new readings. The software collects an RSSI value from each antenna for a selected number of cycles. 
Subsequently, the values are tabulated with their measured location into a text file. The antennas, while identical in model 
and type, do not necessarily have the same maximum RSSI value for a tag placed directly in front of them. This concern is 
not significant since the data will be normalized, which removing any effect that dissimilar antennas could have on the 
prediction. Additionally, at certain locations in the grid, such as along the edge of the test space, the tag simply cannot be 
read by one or more antennas. Whether it was the tag being outside of the angle or direction of one of the antennas or the 
orientation of the tag relative to an antenna in its field, the missing value in the tabulated data was represented by a zero for 
the model. This encoding was simply used to represent the condition when no signal strength could be read. 

 
5.2 Data Collection with Interference 
The data was initially collected with a metal interference object in the 20’ by 20’ testing space.  
 Figure 2 shows the location of the tags as well as the location of the metallic object. The metallic interference consisted of 
a 12’ high metallic ladder covering a 4’ by 2’ area and 12’ tall. The human interference object was also positioned in the 
same location as the metal object for the sake of comparison as shown in Figure 3. The final scenario of data collection 
was when both human and metal interference objects were placed into the test space as shown in Figure 4. Since both 
objects where used, the human interference was randomly positioned on the grid at (16, 12).  

 

   
Figure 2.  Tags with Metal 

Interference 
Figure 3.  Tags with Human 

Interference 
Figure 4.  Tags with both Metal 

and Human Interference 
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5.3 Creation of ANN Model 
An ANN is used to create a predictive model that generates a robust solution in the presence of noise. For this proof of 
concept, a traditional multilayer perceptron (MLP) architecture was used with hyperbolic transfer functions all if the 
network’s layers. In addition, to determine the best performing ANN, the numbers of hidden layer nodes were varied from 
four to 24 during training. Data samples were also randomized and partitioned into three sub-sets of data, where 60% of the 
data was used for training, 15% was used for cross validation, and 25% was used for testing in each of the models. It should 
be noted that cross-validation was used in order to prevent the model from memorizing the system. The model was then 
trained over 30 iterations of 10,000 epochs with the training being terminated if there were more than 400 epochs trained 
without improvement. After the 30 iterations of training, the model was tested for accuracy by generating a prediction of 
the testing dataset. From the ANN model, a localization algorithm is extracted and prepared for implementation in software 
to provide a visual representation of the space and its contents. It should also be noted that linear regression models were 
constructed in order to test the ANNs ability.   

 
5.4 Dataset Smoothing 
Sample data can be collected very quickly from the RFID equipment. For example, in 22-24 seconds, over 100 instances 
can be recorded. Data preprocessing techniques can be used in order to reduce the effects of noisy or inconsistent data 
collection to improve the prediction accuracies of an ANN. Thus, the data that was collected for the experiment was 
aggregated using both moving averages and median values of the RSSI values. These moving values were calculated using 
a bin size of 5, 10, and 25 instances. For example, of the 100 sets of four RSSI values collected at each of the 28 locations 
used for the experiment, the sample data was aggregated to create a new instance. This process was repeated until the data 
set was reduced from 2800 lines of data at 28 locations to 560 lines of data representing 28 locations.  
   In addition to proving the concept that ANNs can be used as a localization algorithm, both the moving average and 
median data aggregation techniques will be compared. Thus, several models will be constructed to determine if one 
approach outperforms the other. In order to make this comparison, the coefficient of determination (R2) will be presented 
that to show the amount of variation that is explained by the models as well as the actual predicted errors, which  represents 
the distance the prediction was from the measured location in inches.   

 
6. RESULTS 

 
An experimental procedure was performed in order to determine which ANN architecture that produced the best results 
without the presence of interference from the metallic or human objects. Table 1 provides a summary of this procedure with 
the random arrangements of the RFID tags shown in Figure 1. Once the best network architecture was determined, it was 
used for all other remaining experiments. The best network that was found during this procedure was a 2-hidden layer MLP 
using the conjugate gradient learning rule. This network consisted of eight nodes in the first hidden layer and four nodes in 
the second hidden layer.  
 

Table 1.  Comparison of ANN Architectures 
 

Learning Rule # of layers / Processing 
Elements per layer 

Avg. 
Error 

(in.) 

Combined 
R2 

4-2 8.89 0.920 
8-4 4.54 0.964 
12-6 4.25 0.969 
24-12 4.08 0.970 
8-4-2 4.60 0.962 

Momentum 

24-12-6 3.79 0.969 
4-2 8.82 0.924 
8-4** 3.65* 0.970* 
12-6 4.07 0.968 
24-12 4.55 0.960 
8-4-2 6.71 0.955 

Conjugate Gradient 

24-12-6 4.06 0.964 
 

   Using the network architecture found in the initial experimental procedure, an ANN was constructed for all four 
arrangements, which included Empty (or no interfering objects), Metal, Human  and Metal & Human. Table 2 shows the 
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results of the four arrangements when no data preprocessing techniques were used. In other words, the full dataset was used 
in order to determine if the data aggregation techniques improved the accuracy of the ANN-RFID location system.  

 
Table 2.  Full Dataset Performances for the Testing Arrangements  

 
Coefficient of determination R2 Empty Metal Metal & Human Human 

Full Dataset X loc. 0.868 0.841 0.910 0.852 
  Y loc. 0.928 0.908 0.938 0.916 
  Avg R2 0.898 0.874 0.924 0.884 

 
6.1 Smoothing with Average Values 
Once the baseline results were analyzed using all of the data that was collected for the RFID readings, the ‘best’ ANN 
model architecture was used to train with the aggregated data using the moving average data preprocessing technique. The 
results of this investigation are summarized in Table 3. 

 
Table 3.  Moving Average Dataset Performances for the Testing Arrangements 

 
Error (inches) Empty Metal Metal & Human Human 
Full Dataset 0.893 0.874 0.924 0.884 
Average 5 0.942 0.952 0.973 0.926 
Average 10 0.948 0.972 0.979 0.954 
Average 25 0.973 0.940 0.966 0.961 

 
   The results show that the models are increasingly accurate for an increasing number of averaged instances up to a limit 
for all levels of interference. The positive effect of the smoothing begins to decline after an average of 25 instances, due to 
the lack of a large sample size. Increasing the amount of data collected at each test location in the space; however, would 
greatly increase the setup time with only a slight upgrade in the accuracy 
   An average of between 10 – 20 values provided an accurate prediction for this system for all types of interference. The 
optimum number of instances to be reduced down to averages, in order to maximize the accuracy for a dataset starting with 
100 data samples recorded per location. The usage of average instances enhanced the accuracy of the model without 
sacrificing a copious amount of time in the data collection or model creation process. This suggests that reducing the data 
down to 10 instances per location has approached a minimum error for most test cases. 

 
6.2 Smoothing with Median Values 
The median of a varied number of instances provides another method to smooth the inputs of the model. A median of 10 
values has the unique ability to eliminate an outlier from skewing the average. As with the smoothing by way of average 
instances, the median of instances increasingly improves the accuracy of the model. Table 4 shows that the median values 
increase the accuracy of the model effectively when given a sufficient amount of data with which to train. The accuracy for 
the median of 10 instances produces the best model as shown by the actual error and as shown by the average of instances.   

 
Table 4.  Median Dataset Performances for the Testing Arrangements 

 
Error (inches) Empty Metal Metal & Human Human 
Full Dataset 0.989 0.874 0.924 0.884 
Median 5 0.902 0.933 0.949 0.943 
Median 10 0.928 0.964 0.971 0.955 
Median 25 0.951 0.937 0.960 0.971 

 
   The predicted error is slightly better on average for the median of 10 instances compared to a bin size of 25. In order to 
determine the best method to construct the model for this system, the error rates are compared with the coefficient of 
determination and the predicted error in inches. The results show that sampling using average values and median values 
increased the accuracy of the model. The difference between the median and average models is slight; however, the models 
constructed with average values give a minor improvement over the models constructed from median values. The results 
also show that both predicted error and coefficient of determination are improved with a model constructed from an 
increasing number of average or median instances. These results show that reducing the dataset into averages of 10 
instances has improved the accuracy of the model most efficiently. The time needed to collect 10 samples of RSSI values 
from the four antennas for use with implementation software is approximately 2.4 seconds for this system. Thus, the 
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accuracy of the system is improved by approximately 9 inches with the addition of the average values model while; the 
speed of the system is only slightly reduced. The software would need no more than 2.4 seconds to gather an adequate 
amount of data to generate a prediction of the location of the tagged object with minimal latency. The system is capable of 
adequate accuracy, but the model has to be more accurate than a multiple linear regression or the time needed to construct 
this model would be unnecessary.   

 
6.3 Artificial Neural Networks vs. Multiple Linear Regression 
To determine if the time necessary to drive an ANN is advantageous for a practitioner, a comparison of the ANN models 
will be made to a benchmark method of multiple linear regression. Table 5 shows the comparison of the regression models 
for the four types of RFID arrangements, where the error is provided in the average distance away an object is predicted 
from its true location. 

 
Table 5.  Comparison of regression models and ANN models 

 
Error (inches) Empty Metal Metal & Human Human 

  ANN Reg. ANN Reg. ANN Reg. ANN Reg. 
Full Dataset 24.50 52.10 23.65 44.41 21.13 46.90 24.65 50.22 
Average 5 19.45 43.62 18.50 38.28 13.26 41.04 20.12 40.54 
Average 10 17.74 42.40 14.22 34.20 11.99 40.15 17.98 43.67 
Average 25 12.61 34.52 21.43 38.83 15.71 39.35 17.62 40.55 

 
   The ANN models surpassed the regression models independent of the number of instances averaged or the type of 
interference present in the test space. As has been proven in other research studies (Kumar, Rao, & Soni, 1995) (Young, 
Holland, & Weckman, 2008), ANNs generally perform at least as well as linear regression when using linear or non-linear 
data, if the model is trained sufficiently. While this research does not include multiple types of regression, this addition was 
meant to illustrate the comparison of the ANNs to a familiar method. 

 
7. CONCLUSION 

 
This research demonstrates a methodology to construct an accurate location system using RFID technology in conjunction 
with ANN models. Artificial neural networks provided a robust solution that favorably compares to multiple linear 
regression. The accuracy of the system is obviously important; however, the setup time was reasonably short, the cost of the 
equipment was competitive, and the ease of setup and maintenance is one of the best features of the system. The accuracy 
of the system is good (i.e. 12-18 inches), but not exceptional (i.e. <6 inches) for a 20’ X 20’ space. However, the benefit of 
tracking objects in a space with a good prediction of location would still provide more information than merely absence or 
presence. Additionally, a model was created for a 20’X 20’ space in 20-30 minutes after a site survey and data collection 
that takes approximately one hour. Thus, this portable system could be operational rather quickly and inexpensively to 
provide highly accurate asset tracking indoors.  
   The mathematical models, created in this research, predicted the location of the tagged object an average of 23.4 inches 
closer than a multiple linear regression method. The actual effects of metal and human interference were less than expected 
for this system; however, the justification of the use of ANNs is derived from the increased accuracy. Additionally, the 
smoothing of the data with averaged samples provided a boost to the accuracy without obtaining a significant amount of 
extra data. This is not a significant limitation due to the reader’s ability to acquire an abundant about of samples in a short 
period of time. The best result involved attaining the average of 10 samples to create a new reduced dataset. The best 
models created from the average of 10 instances were accurate within 12-18 inches for each of the arrangements of 
interference. Further smoothing had a negative result due to the lack of data samples to train the model. This result was 
expected but was not overcome because of the desire to limit the amount of data collection needed to provide enough 
training data to produce an accurate model.   
   The major limitation of this system is its inflexibility to an ever-changing environment. In future research, factors such as 
dynamic interference, scalability, and the use of reference tags could be introduced in order to make the system more 
applicable to real-world applications and contend with a dynamic environment with RF obstacles. Ultimately, the ability of 
the system to adapt to a changing environment will be the indicator of its success. 
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