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This research proposes a modification to the Sweeping Algorithm (SWA) to solve the Capacitated Vehicle Routing Problem 

(CVRP) for real-world cases where locations are present on radial patterns. The SWA solves CVRP instances efficiently by 

performing angular sweeping to obtain clusters of locations. However, the SWA does not consider radial distances when 

clustering the locations, which may cause inefficient clustering when there is a presence of locations on radial patterns. 

Therefore, this research proposes a systematic approach to solve CVRP instances with apparent radial clusters by considering 

their angular and radial distances in the clustering phase. This method is configurable to locations’ geography and can handle 

different locations’ assignments. The experimental results indicate that the proposed heuristic outperforms SWA and its well-

known variant, Sweep Nearest Neighbor (SNN), for the targeted instances designed with radial clusters. The results for CVRP 

benchmark instances show comparable performance when using the proposed heuristic. 
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1. INTRODUCTION 
 

Because of the increase in online ordering and delivery services, there has been a need to find the shortest route for vehicles 

to travel cost-effectively. The problem of finding an optimized route for a set of vehicles leaving the depot, visiting several 

locations, and returning to the depot is referred to as the Capacitated Vehicle Routing Problem (CVRP). The vehicles have 

limited capacities, locations have demand to be met, and solution routes must guarantee the satisfaction of demand while not 

exceeding vehicle capacity (Braekers et al., 2016). CVRP has significant importance for many industrial applications, 

especially in the field of transportation, logistics, and distribution. One of the major concerns in the industry is to reduce the 

cost of the product. Since transportation accounts for a significant part of the cost, the CVRP can be used to optimize delivery 

routes and reduce its associated cost (Kalatzantonakis et al., 2019), where a small decrease in the traveled distance can result 

in great savings. The CVRP has been extensively studied in the last few decades, with many methods proposed to solve it 

because of its practical relevance to real-world problems (Zhang et al., 2014). Many methods have been proposed to solve 

the CVRP and fall into two categories of exact methods that result in optimal routes but are computationally expensive, and 

heuristic and meta-heuristic methods, which have been widely used because of the good solutions they produce in a short 

computational time.  

Exact methods guarantee optimality by computing all possible solutions and can be categorized into four categories: 

dynamic programming, set partitioning, branch and bound methods, and branch and cut methods. The approaches to solving 

CVRP have been dominated by the branch and cut methods applied to solve CVRP (Lysgaard et al., 2004). The branch and 

cut and price methods, which are part of the branch and cut methods, have gained favor in the last decade as researchers 

solved large CVRPs more quickly by combining the generation of cuts and columns (Fukasawa et al., 2006). However, 

because CVRP is an NP-hard problem, exact methods cannot be used to solve large-scale problems. The largest CVRP 

instance solved by an exact method consistently has less than 50 customers (Baldacci et al., 2004). The number of customers, 

in other cases, can be much larger. In some instances, there can be more than 100 customers, and the problem needs to be 

solved using heuristic methods. Heuristic methods fall into three categories: constructive, improvement, and two-phase. 
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Constructive methods create routes and optimize them at the same time. Clarke and Wright’s savings algorithm (CW) is one 

of the most well-known constructive methods to solve the CVRP (Clarke and Wright, 1964). Several modifications have been 

proposed to solve the CVRP using CW (Altınel and Öncan, 2005; Pichpibul and Kawtummachai, 2012) and other variants of 

the Vehicle Routing Problem (VRP) (Anbuudayasankar et al., 2012; Cinar et al., 2016). Improvement heuristics improve 

solutions by exchanging routes as in 2-opt or 3-opt heuristics. 2-opt is used for improving routes in the TSP and for 

constructing routes in CVRP as well (Marinelli et al., 2018). 2-opt point exchange has been used to improve routes after 

initial results are obtained (Suthikarnnarunai, 2008). Two-phase methods have been used extensively in the literature for VRP 

applications (Zajac, 2018; Comert and Yazgan, 2021), including route-first cluster-second and cluster-first route-second. 

Route-first cluster-second methods start by decomposing one big initial route into different routes. Beasley (1983) was the 

first to adopt this approach and stated that the second phase is the standard shortest path problem. Cluster-first route-second 

heuristics are the most common two-phase methods to solve the CVRP because of their simplicity in decomposing the 

problem and the short computational time they require. The first phase starts with clustering the locations and assigning each 

cluster to a vehicle, and constructing initial routes, while the second phase optimizes each vehicle route. Clustering is defined 

as classifying specific patterns of locations into groups; and is considered vital in solving the CVRP efficiently (Yücenur and 

Demirel, 2011). One of the popular cluster-first route-second heuristics is the Sweeping Algorithm (SWA), known for the 

good results it produces when solving the CVRP (Gillett and Miller, 1974). The SWA consists of two main phases; the first 

phase clusters locations based on their angular distances, where locations with small angular distances are clustered and 

assigned to the same vehicle, and the second phase optimizes each vehicle route.  

The SWA is an effective method for solving CVRP instances and produces good solutions resulting in its wide 

application in many areas, and is considered in this research because of its simplicity and ease of application. However, the 

SWA may not work well for real-world problems where radial clusters are present. The SWA clusters locations based on 

their angular distances where locations with close angular distances are grouped. This may work well for general cases or 

with cases where locations are close angularly and are not widely separated. On the other hand, when considering special 

cases of locations present on radial positions, SWA may result in a deteriorated solution. Cases where locations are present 

on radial positions tend to be common in real-world problems where locations are separated by rivers, mountains, or rings of 

roads and have not been fully addressed in the literature. In such cases, the SWA creates unnecessarily long-traveled distances 

by requiring detours to reach all locations in a cluster grouped by their angular distances. Many cities around the world 

contain residential blocks separated by rings of roads that cause the formation of radial clusters. An example of such cases 

with rings of roads is present in Shanghai and includes three ring roads, as shown in Figure 1 (Chen and Zhao, 2013). The 

map shows that clustering the locations present on ring roads by their angular distances would not result in an optimal solution. 

This is because necessary detours to move from a location on one ring road to another will increase the total distance traveled. 

In this case, allocating vehicles by ring would result in a better solution. 

 

 
 

Figure 1. Map of Shanghai showing radial clusters 

 

The main objective of this research is to develop a systematic approach to solve CVRP instances with clusters on radial 

positions, where angular and radial distances can be considered in the clustering phase when solving the CVRP. The proposed 
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heuristic addresses the limitations of SWA and is configurable by considering the different geographical natures of the 

locations. The proposed method focuses on improving the clusters formed in the first phase for the targeted instances to 

reduce vehicles’ traveled distances. While in the second phase, the routes are optimized using an off-the-shelf solver for the 

Traveling Salesman Problem (TSP). The outline of this paper is summarized as follows: Section 2 reviews the literature on 

the methods used to solve the CVRP, including SWA. Section 3 explains the problem that will be addressed. Section 4 

describes the methodology used. Section 5 discusses the experimental results and compares the proposed method, the SWA, 

and one of its variants, the Sweep Nearest Neighbor (SNN), in solving CVRP instances. Section 6 provides a conclusion and 

future work. 

 

2. LITERATURE REVIEW 

 

The SWA is a two-phase heuristic method of cluster-first route-second that was introduced as a way to solve the vehicle 

dispatch problem (Gillett and Miller, 1974). The SWA has been used since to solve VRP and its variants because of its 

simplicity. Different methods were used in combination with the SWA to improve its performance. Savitri and Kurniawati 

(2018) proposed a sweep algorithm and MILP for Vehicle Routing Problems with Time Windows (VRPTW) that reduced 

the traveled distance and fuel cost. Chen et al. (2015) proposed a hybrid two-phase SWA and greedy search to solve CVRP; 

the first phase consists of clustering locations using SWA where solutions are optimized using Nearest Neighbor (NN). The 

second phase recombines adjacent clusters to form better clusters. A greedy search is then applied to find the shortest path 

for vehicles. A greedy search algorithm was used to decrease the travel distances of vehicles after constructing routes in 

several works (Rattanamanee et al., 2020). Teodorović and Pavković (1996) developed a VRP model based on SWA, rules 

of fuzzy arithmetic, and fuzzy logic for problems with uncertain demand at locations. The results indicate its ability to solve 

instances efficiently and determine near-optimal routes.  

Considerable research proposed modifications to the SWA to improve its performance in solving CVRP instances. A 

summary of the modifications of SWA is shown in Table 1. Renaud and Boctor (2002) proposed a new sweep-based heuristic 

to solve fleet size and mix VRP. The modified SWA considered two reference points of the depot and the geometrical center 

of locations to solve Euclidean problems. For non-Euclidean problems, different orders were defined that resulted in 

numbering locations based on the order in which they will be visited in the resulting tour. The results show that the modified 

SWA produced good solutions in terms of cluster formation and outperformed the SWA and its hybrid approaches by 

reducing the vehicles traveled distances. The weakness of SWA in clustering locations based on angular distances was first 

pointed out by Na et al. (2011). A modification was proposed to tackle this weakness by using NN to determine locations for 

each cluster after the first location in each cluster is assigned. The SNN was tested on benchmark instances and proved to be 

effective in solving CVRP and resulted in better performance compared to SWA in terms of the total distance traveled. 

Akhand et al. (2017) proposed an adaptive sweep and investigated appropriate cluster starting angles. The adaptive sweep 

checks angle differences for the consecutive locations and the distances between the locations as well as between the depot 

and locations. SWA starting from different angles formed better clusters and provided a better CVRP solution compared to 

the classical SWA. Peya et al. (2018) investigated the ability of an adaptive sweep to solve CVRP by starting to form clusters 

from the maximum preference values. The preference value is calculated for each consecutive location, and the maximum 

preference point is taken as a starting angle of cluster formation. Peya et al. (2019) proposed a Distance-based Sweep 

Algorithm (DBSA) to solve the CVRP by considering NN, where cluster formation starts from the farthest node and continues 

by performing NN. The DBSA showed competitive results in terms of total distance traveled when compared with SWA and 

SNN. 

Different applications of SWA and its modifications in solving VRP and its variants produced good solutions in many 

studies, where most papers modified the SWA by changing the reference point and modifying the starting angle. Previous 

research focused on the general case of performing SWA on randomly distributed instances. However, few papers addressed 

the limitations of SWA in clustering locations based on their angular distances. The method of clustering and assigning 

vehicles solely by angular distance is not always efficient, especially for real-world problems where radial clustering can be 

considered and result in a better solution. The proposed method tackles the limitations of SWA and provides a better formation 

of clusters for instances where radial patterns occur by considering the geographical nature of locations. Previous research 

did not consider instances that have specific patterns of clusters that are present radially. In the real-world many practical 

problems have specific patterns of clusters that are present radially because of geographical barriers or ring roads where 

angular clustering might not be efficient and can result in increased traveled distances. Radial-based clustering can reduce 

the traveled distances for such cases and has not been studied thoroughly (Tarawneh et al., 2020).  
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Table 1. Summary of SWA modification studies 

Paper Description 

Gillet and Miller (1974) 

 

Renaud and Boctor (2002) 

 

Na et al. (2011) 

Introduced SWA to solve the vehicle dispatch problem 

by dividing it into two sub-problems 

Modified the SWA by changing the reference point for 

Euclidean problems  

Modified the SWA by using NNA to assign locations to 

the location with the smallest polar angle  

Akhand et al. (2017)
 

Modified the SWA by considering an adaptive sweep 

cluster to form clusters based on appropriate cluster 

starting angles 

Peya et. Al (2018) 

 

Zahrul et al. (2019) 

Modified the SWA by considering a starting point based 

on the maximum preference point 

Modified the SWA by considering a distance-based 

sweep nearest neighbor that starts clustering from the 

farthest location and continues for a cluster based on the 

nearest neighbor concept 

 

3. PROBLEM DESCRIPTION 

 

The CVRP may be defined by a fleet of M vehicles leaving from an initial location, the depot d, denoted by (0,0), where 

vehicles have limited capacities of Q and locations have demand D that must be met. Each vehicle must leave the depot, visit 

n locations, and return to the depot. M routes must be constructed based on the number of vehicles, and all locations must be 

visited exactly once by a vehicle. The traveled distance of vehicles between any two locations is considered symmetric and 

is measured in Euclidean distance. The objective of CVRP is to minimize the overall distance traveled by vehicles while 

ensuring locations’ demand is met, and the capacity of each vehicle is not violated. The CVRP is formulated as a Mixed-

Integer Linear Programming (MILP) problem to solve it to optimality with decision variables and parameters, as shown in 

Table 2 (Kara et al., 2004). The objective function (1a) is to minimize the distance traveled by the vehicles when visiting the 

locations. Constraints (1b) and (1c) ensure that all vehicles start their tours from the depot and return to the depot. Constraints 

(1d) and (1e) ensure that each location is visited exactly once. Constraint (1f) is the sub-tour elimination constraint that forbids 

solutions with disconnected tours. Constraint (1f), along with constraint (1g), ensures that the capacity of the vehicles is not 

exceeded. The CVRP can be formulated as follows: 

 

Min ∑ ∑ 𝐷𝑖𝑗𝑥𝑖𝑗
𝑁
𝑗=1
𝑗≠𝑖

𝑁
𝑖=1   

(1a) 

s.t. ∑ 𝑥0𝑗
𝑁
𝑗=1  = M 

(1b) 

  

∑ 𝑥𝑖0
𝑁
𝑖=1  = M (1c) 

  

∑ 𝑥𝑖𝑗
𝑁
𝑗=0
𝑗≠𝑖

 = 1 (i = 1,…,N) 
(1d) 

  

∑ 𝑥𝑖𝑗
𝑁
𝑖=0
𝑖≠𝑗

 = 1 (j = 1,…,N) 
(1e) 

𝑢𝑖 -𝑢𝑗 + Q𝑥𝑖𝑗  ≤ Q - 𝐷𝑗  (i, j = 1,…,N; i ≠ j) (1f) 

  

𝐷𝑖  ≤ 𝑢𝑖≤ Q (i = 1,…,N) (1g) 

  

𝑥𝑖𝑗 = {0, 1} ∀  𝑖,𝑗  (𝑖,𝑗 = 1,..,𝑁) (1h) 

  

𝑢𝑖 ≥ 0 (1i) 
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Table 2. Decision variables and parameters for CVRP formulation 
 

Index Set 

i Location where the vehicle is leaving from 

j Location where the vehicle is entering 

Decision Variables 

xi j 1, if there exists a route between locations i and j 

0, otherwise 

ui The cumulative demand on the route up to location i 

Parameters 

Di j The distance traveled from location i to location j  

M The number of vehicles 

Q The capacity of vehicle  

Di The demand of location i  

N The number of locations 

 

The MILP is not easy to solve to optimality because its complexity requires long computational time and is of great 

concern for real-world problems (Moghaddam et al., 2012). Therefore, cluster-first route-second heuristics are commonly 

used to solve the CVRP instead of the MILP as they provide good solutions in less computational time and are considered in 

this research. The performance of cluster-first route-second heuristics depends on cluster formation and route construction 

by TSP. The focus of this research is to cluster locations while considering radial distanced patterns, as efficient clustering 

of locations can improve the solutions drastically. The steps of clustering and routing are illustrated in Figure 2. For the given 

instance, geographical barriers of rivers are present radially; therefore, in Figure 2a, the locations are clustered radially. 

Clustering angularly would require long detours to avoid rivers and would result in an increased traveled distance of vehicles. 

Radial clustering of locations when barriers are present radially can reduce the number of detours needed and, therefore, the 

traveled distance. In Figure 2b, the routes identified do not include detours since the clustering is performed radially and is 

independent of the barriers since this is tackled in the clustering phase. The clustering of such instances requires understanding 

locations’ geography so it can be determined if radial clustering would be efficient. The algorithm is designed to determine 

the degree of radial and angular clustering needed depending on the nature of the locations’ geography , which would result 

in a decreased traveled distance of vehicles. The initial weights ratio for radial and angular distances is set based on the nature 

of the data and how sparse it is radially and angularly; the ratio is updated to ensure that the best clustering is obtained. 

 

  
(a) Clustering phase (b) Routing phase 

 

Figure 2. Two-phase method to solve CVRP 

 

4. ANGULAR AND RADIAL DISTANCE SWEEPING ALGORITHM 

 

For instances with radial clustered patterns, considering the radial distance of locations along with the angular distance can 

improve results, ensure better clustering, and minimize the traveled distance of the vehicles. Therefore, this research proposes 

an Angular and Radial Distanced Sweeping Algorithm (AR-SWA) that performs clustering based on locations’ angular and 

radial distances accounting for different configurations of the distances based on locations’ geography. 
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The steps to perform AR-SWA starts with the normalization of angular and radial distances. Clustering is then 

performed to the normalized locations by taking the location with the least angular distance as the first location to be visited. 

The nearest location is determined by calculating a new distance based on the location’s angular and radial distances. The 

nearest location to that is also determined in the same process where locations are assigned to a vehicle until its capacity is 

met. The next cluster starts from the least angular distance out of the unassigned locations and follows the same steps. This 

process continues until all locations are assigned to vehicles. Once clusters are formed, and initial routes are constructed, each 

route is optimized using a 2-opt point exchange. The proposed algorithm has a polynomial time complexity of O(𝑛4), where 

n represents the instance size. The detailed steps to perform AR-SWA are explained in the following sections. 

 

4.1 Normalization of Locations’ Angular and Radial Distances 

 

The first step in AR-SWA normalizes the locations’ angular and radial distances. Figure 3 shows how distances are 

normalized to facilitate calculations. In 3a, location B is located along a line that radiates 20 degrees above horizontal and 

100 units from the origin. In 3b, which shows B’s location as a proportion of the longest distance in the cluster, the ordered 

pair is transformed to (0.25, 1). 0.25 is the normalized angular distance based on the largest angular distance, and 1 shows it 

is the farthest location in the cluster radially. Because the angular and radial distances have different units, they cannot be 

combined or compared in their current form. This creates the need to normalize both distances to the same scale, where 0 to 

1 is considered. For the radial distance, all locations’ radial distances are divided by the largest radial distance of locations to 

get normalized radial distances. This ensures that the highest radial distance considered is 1 and that all radial distances lie 

between 0 and 1. For the angular distance, all locations’ angular distances are divided by the largest angular distance of 

locations to get normalized angular distances. The detailed steps for normalization of the locations are described in Algorithm 

1. 

 

  
(a) Unnormalized instance (b) Normalized instance based on 0 & R 

 

Figure 3. Example of normalization steps 

 

Algorithm 1 Normalization of locations’ coordinates 

1: procedure IDENTIFY POLAR COORDINATES 

2: input the number of locations N 

3: for n in N do 

4: input location’s longitude as 𝑥𝑛 

5: input location’s latitude as 𝑦𝑛 

6: calculate location’s angular distances Ө𝑛 = tan−1 ( 𝑦𝑛/𝑥𝑛) 

7: calculate location’s radial distances Rn =  √𝑥𝑛
2 + 𝑦𝑛

2   
8: determine max Ө 

9: determine max R 

10: for n in N do 

11: calculate normalized Ө𝑛 = Ө𝑛/max Ө𝑛 

12: Ө𝑛 = normalized Ө𝑛 

13: calculate normalized Rn = Rn/max R 

14: Rn = normalized Rn 
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4.2 Clustering based on Nearest Location 

 

The locations’ normalized angular and radial distances identified in Algorithm 1 will be used for the clustering phase. In AR-

SWA, the locations are clustered by using SWA and finding the nearest locations based on their angular and radial distances. 

Starting with the location with the least angular distance, as in SWA, the nearest location is determined by examining a new 

distance from the current location to its neighbors. The location with the least distance is the nearest neighbor. The AR-SWA 

calculates the new Euclidean Distance (ED) by considering Ө  and R representing the angular and radial distances, 

respectively, each with a specific weight assigned of w1 and w2 indicating the ratio of angular and radial distances considered 

when calculating the ED. The equation used to calculate the distance between locations is as follows: 

 

ED =√Ө2  +  (𝑤2/𝑤1)2𝑅2  (2) 

 

Because each instance has its unique distribution of locations, some instances might be better clustered if the nearest 

locations are considered using a higher ratio of radial to angular distance. Therefore, the proposed heuristic starts with an 

initial ratio based on the geographic nature of the locations and explores other ratios that might improve the performance. 

Once distances are calculated, and the nearest location is identified, the process is repeated by finding the nearest location to 

the current location until vehicle capacity Q is met and a cluster is formed. Another cluster starts from the least angular 

distance out of the unassigned locations and continues by finding the nearest location by using the new distance based on ED 

and stops when vehicle capacity Q is met. This is repeated until all locations are assigned to vehicles. After the clusters are 

formed, an initial route for each cluster is formed based on the sequence of assigned locations to that cluster. This is illustrated 

in Figure 4a, where the location with the least angular distance is identified as the first location to be visited, and in 4b, the 

nearest location is identified by examining the angular and radial distances by calculating ED and choosing the location with 

the least ED. The vehicle capacity is checked after each location is assigned to a cluster; when the vehicle capacity is 

exceeded, the location is assigned to a second cluster. The nearest locations to that location are also assigned to the second 

cluster until the second vehicle capacity is met. The clusters formed through these steps are shown in 4c. The locations 

indicate clear radial clusters emphasizing the use of a higher ratio for radial to angular distance, which results in two clusters 

formed radially. The detailed steps for the clustering and initial routes assignment are described in Algorithm 2. 

 

   

(a) SWA to identify location (b) Identification of nearest location 
(c) Clustering results with the least 

angular distance 

 

Figure 4. Example of clustering using AR-SWA 

 

Algorithm 2 Clustering and routes assignment phase 

  1: procedure CLUSTER BASED ON NEAREST LOCATION 

  2:  input the number of vehicles M 

  3:  input vehicle capacity Q  

  4:  initialize depot d as (0,0)  

  5:  for m in M do 

  6: n = 1 

  7: if Ө𝑛 with respect to d is min then  

  8:  assign location n to m 

  9: else 

10: procedure FIND MODIFIED DISTANCES BASED ON d 

11: initialize w2/w1 
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12: while n in N do  

13:                         calculate EDn  = √Ө𝑛
𝟐 + (𝑤2/𝑤1)𝟐𝑅𝑛

𝟐  

14: increment w2/w1 

15: calculate EDn new 

16: if EDn new < EDn then 

17:  EDn = EDn new  

18: else 

19: EDn = EDn 

20: repeat until EDn new > EDn 

21: if EDn is min then 

22: assign location n to m 

23:  repeat until Q is met  

24: construct initial route of n locations 

25: else 

26: d = min unassigned Ө𝑛 

 

4.3 Vehicles Routing 

 

After clusters are formed, and initial vehicle routes are constructed for each cluster, the routes are optimized to reduce the 

vehicles traveled distances with the steps shown in Algorithm 3. Many methods have been used to improve the routes obtained 

by solving TSP. In this research, the commonly known 2-opt point exchange is used for the routing phase. 2-opt point 

exchange is known for its good performance and has been widely used for solving CVRP (Lei and Li, 2010). Kaku et al. 

(2003) compared the efficiency of three exchanges for constructing routes, including swap, relocation, and 2-opt, and 

identified that the 2-opt is the most efficient. The route order of any two locations in the same cluster is swapped using 2-opt. 

If the swap results in a reduced traveled distance, then the swap is accepted, and a new route is formed with the updated route 

order based on the swapping. The swapping of two locations is repeated until no further swapping results in improvements 

which is identified as a stopping criterion. This results in routes that have minimized the traveled distance of vehicles by 

checking all possible swaps of locations to find the best order of locations to be visited for each vehicle.  

 

Algorithm 3 Vehicles routing optimization phase 

  1: procedure OPTIMIZE VEHICLE ROUTES USING 2-OPT EXCHANGE 

  2:for n in N do 

  3: Ө𝑛 = normalized Ө𝑛max Ө𝑛 

  4: Rn = normalized Rn max Rn 

  5: set i = 1 

  6:for m in M do 

  7: while n is assigned to m do 

  8: calculate distance from n to n + i 

  9: j = i+1 

10: calculate new distance from n to n + j 

11: if new distance < distance then 

12: swap i with j 

13: else 

14: do not swap 

15: i = i+1 

16:  repeat until new distance > distance  

17: obtain optimized route 

 

5. NUMERICAL EXPERIMENTS 

 

Numerical experiments were conducted to evaluate the performance of AR-SWA in terms of the total distance traveled by 

vehicles and computational time. The experiments consist of two parts; the first part evaluates the performance of the 

proposed method for a targeted class of problems that are designed with radial patterns of locations and compares its 

performance against SWA and one of its well-known variants, SNN. The second part evaluates the performance of the 

proposed method on the Augerat benchmark datasets A and B (Augerat et al., 1995) and Christofides dataset M (Christofides 
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and Eilon, 1969) and compares it with the SWA. All experiments were conducted using Python 3.7 on an Intel Core i7-8550U 

with 16 GB memory. 

 

5.1 Performance Comparison on Dataset with Radial Patterns 

 

Instances were generated to show locations present on radial clustered patterns and test the performance of AR-SWA for the 

targeted set of problems, especially since it is designed to handle locations with specific geographic nature of locations with 

radial patterns. For such cases, a higher ratio of radial to angular distance is considered. The performance of these instances 

is tested against the classical SWA and a well-known variant of SWA, SNN. The exact solution is not included in the 

comparison since it consumes high computational time and hence is not practical for large-scale real-world problems. 

Different studies omitted the comparison with exact solutions as it was not able to provide efficient solutions in reasonable 

computational time for large-scale problems (Ahkamiraad and Wang, 2018). Therefore, the performance comparison is tested 

for the heuristic methods. Figures 5 and 6 show a comparison of the clusters obtained using SWA, SNN, and AR-SWA for 

instances 2 and 3, each having apparent radial clusters of locations and four vehicles leaving from the depot (0,0). Clustering 

using AR-SWA identifies four radial clusters and results in a minimized traveled distance compared to SWA and SNN, which 

did not efficiently identify the radial clusters. AR-SWA considers locations’ geography and groups locations that are close 

radially together while considering their angular distances and how sparse they are. The clusters obtained using SWA and 

SNN did not consider the characteristics of the locations’ geography, which resulted in locations that are sparsely clustered 

together. The experimental results are summarized in Table 3 and show that AR-SWA heuristic finds efficient clustering for 

locations on radial patterns and outperforms SWA and SNN for the targeted instances in terms of the total distance traveled 

with improvements up to 40%. Paired t-tests were performed between AR-SWA and SWA and AR-SWA and SNN for both 

small-sized and large-sized instances at a 95% confidence interval to test if the results are statistically significant. The results 

for the tests conducted indicate a statistically significant difference between the AR-SWA and SWA and AR-SWA and SNN 

for small and large-sized instances with a p-value < 0.05, indicating the superiority of the proposed method.  

 

   
(a) Clustering using SWA (b) Clustering using SNN (c) Clustering using AR-SWA 

 

Figure 5. Example of clustering using SWA, SNN, and AR-SWA, for instance, 2 with apparent radial clusters 

 

   
(a) Clustering using SWA (b) Clustering using SNN (c) Clustering using AR-SWA 

 

Figure 6. Example of clustering using SWA, SNN, and AR-SWA, for instance, 3 with apparent radial clusters 
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Table 3. Comparison of total distance traveled (units) for instances with radial patterns 

 

Size Instance SWA (x) SNN (y) AR-SWA (z) 
Imp% by AR-SWA compared 

to SWA ((x-z)/x) 

Imp% by AR-SWA compared 

to SNN ((y-z)/y) 

Small (40-50 

locations) 

1 90 89 67 26 25 

2 118 111 100 15 10 

3 108 109 90 17 17 

4 76 74 55 28 26 

5 75 61 55 27 10 

6 53 55 47 11 15 

7 50 49 30 40 39 

8 44 34 34 23 0 

9 89 89 68 24 24 

10 118 111 99 16 11 

11 93 91 87 6 4 

12 86 78 74 14 6 

13 92 76 73 21 4 

14 127 115 105 17 8 

15 87 86 81 7 6 

16 103 99 95 8 5 

17 94 84 83 12 1 

18 87 83 79 9 5 

19 106 109 102 4 7 

20 102 103 92 9 10 

Large (70-80 

locations) 

21 108 105 105 3 0 

22 112 112 110 2 2 

23 117 111 106 9 4 

24 147 133 126 14 5 

25 132 136 120 9 12 

26 183 175 170 7 3 

27 92 87 81 12 7 

28 103 101 101 2 0 

29 108 105 104 4 1 

30 167 155 139 17 11 

31 114 117 104 9 12 

32 178 175 153 14 12 

33 121 118 113 7 5 

34 145 143 128 12 11 

35 137 136 126 8 7 

36 140 136 133 5 2 

37 108 101 93 14 8 

38 102 103 95 7 8 

39 136 126 121 11 4 

40 154 158 143 7 10 

 

5.2 Performance Comparison on Benchmark Datasets 

 

The proposed heuristic is tested on benchmark datasets to prove its robustness in handling different geographical 

characteristics of locations, although they do not necessarily have the same characteristics the heuristic is designed for. The 

proposed heuristic provides good solutions and outperforms SWA, resulting in a decreased traveled distance for 80% of the 

instances in the benchmark datasets, which do not consider radial patterns. An overall average improvement of 3% is 

achieved, with some instances resulting in up to 10-14% improvement compared to SWA. Table 4 summarizes the results for 

the benchmark datasets and shows the comparison of SWA and AR-SWA in terms of the total travel distance of vehicles. 

The solution of clusters using SWA and AR-SWA are analyzed and compared. Figure 8 compares the clusters formed using 

SWA and AR-SWA, for instance, in the benchmark dataset. 7a shows the clusters formed using SWA, where five vehicle 
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routes are generated based on locations’ angular distances. The total traveled distance of vehicles using the SWA equals 905 

units. Clustering for the same instance using AR-SWA is shown in 7b, where an initial solution is obtained based on setting 

an initial ratio of distances based on locations’ geography considering higher radial to angular distance since there are some 

radial clusters present. Five routes are generated based on locations’ radial distances; the total distances traveled equals 861 

units with an average improvement of around 5% by including the radial distance compared with SWA. This shows that 

considering radial distances when clustering is more efficient compared to clustering solely by angular distances, especially 

for instances that have some patterns of radial clusters. AR-SWA iterates until it finds the best solution by considering the 

geographic nature of locations. The improved solution obtained using AR-SWA is shown in 7c. The total distance equals 817 

units, with an average improvement of around 10%. Since this instance has radial clusters that may not be apparent as in the 

generated cases, considering both angular and radial distances equally is more efficient. The best solution obtained by AR-

SWA is shown in 7d with a total distance traveled of 805 units and an average improvement of around 11%. This shows that 

the solutions obtained using AR-SWA outperform SWA for this instance. In 7a, two vehicles must visit the right-most cluster. 

However, in 7d, only one vehicle is needed for the right-most cluster, indicating that the proposed method reduces the total 

traveled distances by accounting for radial patterns even if they are not as apparent. 

 

Table 4. Comparison of total distance traveled (units) and computational time (sec) for benchmark instances 

 

Instance SWA (x) AR-SWA (z) Imp% ((x-z)/x) SWA time AR-SWA time 

A-n32-k5 990 977 1.24 0.0211 0.0397 

A-n33-k5 910 848 6.77 0.0102 0.0362 

A-n33-k6 1101 1080 1.95 0.0088 0.0184 

A-n34-k5 1028 930 9.53 0.0121 0.0392 

A-n36-k5 1064 1039 2.40 0.0214 0.0392 

A-n37-k5 974 972 0.20 0.0271 0.0655 

A-n37-k6 1340 1345 -0.37 0.0145 0.0241 

A-n38-k5 1014 925 8.76 0.0194 0.0455 

A-n39-k5 1146 1081 5.68 0.0214 0.0499 

A-n39-k6 1223 1181 3.43 0.0184 0.0450 

A-n44-k7 1313 1226 6.64 0.0221 0.0476 

A-n45-k6 1252 1217 2.79 0.0188 0.0414 

A-n45-k7 1454 1412 2.85 0.0243 0.0460 

A-n46-k7 1180 1126 4.63 0.0269 0.0640 

A-n48-k7 1301 1303 -0.20 0.0249 0.0455 

A-n53-k7 1371 1335 2.62 0.0297 0.0473 

A-n54-k7 1544 1561 -1.10 0.0258 0.0813 

A-n55-k9 1482 1469 0.88 0.0188 0.0479 

A-n60-k9 1919 1916 0.16 0.0467 0.0675 

A-n61-k9 1494 1501 -0.49 0.0241 0.0614 

A-n62-k8 1798 1758 2.24 0.0699 0.0936 

A-n63-k10 1882 1788 5.0 0.0224 0.0849 

A-n63-k9 2043 1999 2.12 0.0312 0.0699 

A-n64-k9 1832 1896 -3.54 0.0391 0.0823 

A-n65-k9 1621 1576 2.77 0.0304 0.0851 

A-n69-k9 1539 1504 2.24 0.0440 0.1072 

A-n80-k10 2357 2317 1.68 0.0514 0.1176 

B-n31-k5 905 806 10.95 0.0127 0.0210 

B-n34-k5 1282 1158 9.67 0.0203 0.0563 

B-n35-k5 1134 1134 0.00 0.0193 0.0408 

B-n38-k6 1065 1050 1.36 0.0187 0.0357 

B-n39-k5 748 708 5.30 0.0244 0.0583 

B-n41-k6 1020 1026 -0.52 0.0149 0.0450 

B-n43-k6 949 936 1.31 0.0180 0.0575 

B-n44-k7 1441 1238 14.10 0.0158 0.0450 

B-n45-k5 1058 1042 1.54 0.0325 0.0743 

B-n45-k6 1009 1007 0.21 0.0219 0.0571 

B-n50-k7 1022 1036 -1.36 0.0364 0.0592 
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Instance SWA (x) AR-SWA (z) Imp% ((x-z)/x) SWA time AR-SWA time 

B-n50-k8 1694 1634 3.55 0.0544 0.0507 

B-n51-k7 1471 1420 3.46 0.0216 0.0469 

B-n52-k7 1115 1130 -1.39 0.0561 0.0630 

B-n56-k7 1014 959 5.4 0.0478 0.0844 

B-n57-k7 1714 1696 1.07 0.0314 0.0604 

B-n57-k9 2009 1863 7.30 0.0439 0.0612 

B-n63-k10 2027 2016 0.56 0.0567 0.0518 

B-n64-k9 1333 1341 -0.61 0.0314 0.0906 

B-n66-k9 1706 1685 1.24 0.0729 0.1140 

B-n67-k10 1573 1534 2.52 0.0295 0.0793 

B-n68-k9 1648 1698 -3.05 0.0463 0.0981 

B-n78-k10 1748 1750 -0.12 0.0934 0.0981 

M-n101-k10 1494 1471 1.56 0.1463 0.3095 

M-n121-k7 1833 1661 9.40 0.5307 0.9364 

M-n151-k12 1846 1804 2.29 0.3862 0.6598 

M-n200-k16 2352 2325 1.14 0.4586 0.7042 

 

  
(a) B-n31-k5 clusters using SWA 

 

(b) B-n31-k5 initial clusters using AR-SWA 

 

  
(c) B-n31-k5 improved clusters using AR-SWA (d) B-n31-k5 best clusters using AR-SWA 

 

Figure 7. Example of clustering using SWA and AR-SWA for B-n31-k5 

 

6. CONCLUSION 
 

This research overcomes the limitations of the SWA for clustering instances with specific radial patterns that degrade its 

performance. The proposed method extends on the SWA and finds a systematic approach to solve CVRP by clustering 

locations based on their angular and radial distances. The proposed method outperforms SWA and results in better cluster 

formation and better performance in terms of the total traveled distance. AR-SWA is competitive with other methods, such 

as SNN, and results in better solutions for the targeted instances by reducing the traveled distance by up to 40%. The proposed 

method was tested on 53 instances of benchmark datasets. Almost 80% of instances resulted in a decreased traveled distance, 

where the average improvement was around 3%. AR-SWA is simple to implement and results in better solutions for most 
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instances, with an insignificant increase in the computational time needed compared with SWA. This method is suitable for 

real-world applications with apparent radial clusters and distinct geographical layouts of locations. 
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