
International Journal of Industrial Engineering, 30(6), 1558-1577, 2023 

 

 

DOI: 10.23055/ijietap.2023.30.6.8613 ISSN 1943-670X © INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING 

 

AN APPROACH BASED ON MACHINE LEARNING AND DISCRETE EVENT 

SIMULATION FOR SUPPLY CHAIN OPTIMIZATION: THE CASE OF ON-

STOCK CHAINS 
 

Zineb Nafi*, Fatima Ezzahra Essaber, Fatine Elharouni, and Rachid Benmoussa 

 

Department of Industrial and Logistic Engineering 

National School of Applied Sciences, Cadi Ayyad University 

Marrakech, Morocco 
*Corresponding author’s e-mail: zineb.nafi@ced.uca.ma 

 

The complexity of supply chain problems, more specifically the case of on-stock chains, is due to performance indicators 

variety, antagonism, and the difficulty of understanding the effects and interactions of different performance drivers with 

regard to these indicators. As mathematical formalization is essential to optimize the performance of these chains, this paper 

generally aims to study the contribution of Machine Learning to mathematically link the evaluation parameters of an on-stock 

supply chain to its action parameters. This work is based on an academic case study that seeks to mathematically formalize 

the problem of delivery delay in an on-stock supply chain. To this end, several Machine Learning algorithms have been tested 

and compared. This experience highlighted the impossibility of obtaining a labeled dataset through data collection from the 

real system. It thus demonstrates the necessity to use a simulation system, in particular, discrete event simulation, to generate 

this dataset. 
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1. INTRODUCTION 
 

Supply chain management is a complex field with various challenges, including cost optimization, quality control, and 

meeting strict delivery schedules. In the context of on-stock supply chains, a specific procurement strategy is employed where 

purchased items are stored before being sent to customers. However, this approach introduces a phenomenon known as 

"decoupling," creating a disconnect between the procurement and expedition processes. While individual procurement actions 

may not directly affect specific expeditions, their cumulative impact significantly influences overall performance. To address 

these complexities, we utilize Discrete-Events Simulation (DES), a powerful analytical tool capable of dissecting and 

understanding each link of the supply chain independently, without requiring predefined connections, instead of Machine 

Learning (ML), which relies on labeled data and direct links. A labeled dataset consists of data points that are explicitly 

categorized or "labeled" to indicate their characteristics or outcomes. 

Moreover, due to the inherent decoupling problem within on-stock supply chains, collecting such labeled datasets 

becomes challenging. The decoupling creates discontinuities and uncertainties that make it difficult to directly label data. As 

a result, applying machine learning techniques, which rely on these labeled datasets for training and prediction, becomes a 

complex endeavor in this context. To address this challenge, we turned to discrete event simulation (DES) as part of our 

methodology. DES allows us to model and understand each individual link within the supply chain, offering a clear and 

accurate representation without the need for pre-labeled data. By simulating various scenarios and events within the supply 

chain, DES generates data that inherently carries labels associated with each step and outcome. These outcomes serve as the 

labeled data points we require for training and informing our machine-learning models. 

To comprehensively address the challenges within the global on-stock supply chain, we recognize the need for a dual 

approach. DES allows us to precisely represent and understand each link of the supply chain individually, offering a clear 

and accurate depiction. On the other hand, ML thrives when provided with labeled data sets. By combining the strengths of 

DES and ML, we can create a more holistic solution. While DES helps us map out each step in the supply chain, ML can 

leverage labeled data to generate formulas that aid in managing the discontinuities inherent to on-stock supply chains. These 

formulas facilitate the ability to optimize and streamline on-stock supply chain operations effectively, thereby enhancing 

overall performance (Benmoussa, 2021). 
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While we recognize the importance of on-stock supply chains, it's crucial to emphasize their unique challenges, 

particularly related to inventory management and delivery delays. These delays often stem from intricate inventory 

management complexities, supplier reliability issues, transportation challenges, and unexpected disruptions. This research 

paper aims to offer practical solutions and insights to mitigate the sources of delivery delays within on-stock supply chains. 

This approach involves considering manufacturing and expedition variables that impact these delays. By doing so, we aim to 

examine the entire on-stock supply chain and take into account the decoupling issues in these chains. By exploring the 

complexities of the on-stock chain, we aim to provide practical solutions that not only optimize logistic performance but also 

directly target the root causes of the decoupling problem within on-stock supply chains. 

The primary objective is to create a mathematical model that bridges the gap between discrete-events simulation and 

machine-learning techniques. This model will serve to formalize the intricate connections between evaluation and action 

parameters within the global on-stock supply chain. By doing so, we intend to tackle the issue of decoupling, which is the 

disconnection between the procurement, manufacturing, and expedition processes in on-stock supply chains. By developing 

this model, we aim to bring more continuity and coherence to the supply chain's operations. This continuity is crucial because 

it enables us to optimize the flow of goods more effectively. By understanding the relationships between various supply chain 

components, we can identify bottlenecks and inefficiencies contributing to delays. Consequently, our formalized approach 

will facilitate more precise interventions, allowing for improved coordination of procurement, manufacturing and expedition 

processes. Ultimately, this will lead to reduced delivery delays and enhanced overall efficiency in on-stock supply chains. 

In our quest, we present a structured approach that blends theoretical insights with practical testing. While our theories 

hold promise, it's essential to confirm their usefulness. To bridge this gap, we employ a method rooted in practical experience. 

Through an academic case study involving simulation and machine learning techniques, we aim to demonstrate how well our 

approach works in dealing with the challenges of on-stock supply chains. This case study seeks to develop an equation that 

links the theoretical delay created in an on-stock supply chain and the various action variables. 

However, our goal extends beyond this academic case study. We intend to create a versatile model that can be adapted 

to different situations beyond our chosen case study. This model serves as a blueprint for understanding the relationship 

between action and evaluation parameters in on-stock supply chains. By combining theory with practical usefulness, this 

model becomes a valuable tool for improving on-stock supply chain performance and dealing with the decoupling problem. 

Through this effort, we aim to provide practical solutions that not only address the specific challenges of our academic case 

study but also have the potential to improve a wide range of on-stock supply chain situations. Hence, via this academic case 

study, this paper seeks to provide responses to the following research question:  

How to combine machine learning and discrete event simulation in order to mathematically formalize the action and 

evaluation parameters and solve the decoupling problem in an on-stock supply chain so as to optimize its logistic 

performance? 

This paper is organized as follows. The first section describes the literature review. The following section reveals the 

methodology adopted. Then, a third section is presented that discusses the academic case study’s findings. The discussion 

and results section compares the different algorithms presented in the case study and eventually compares them with the other 

research works. The case study's results are also presented in the form of an equation that links the theoretical delay to the 

different evaluation variables. The paper ends with crucial conclusions and suggestions for further research. 

 

2. LITERATURE REVIEW: 
 

2.1 Supply Chain Optimization 

 

Several methods have been used to optimize the supply chain’s performance. In the case of a sustainable supply chain,  a 

multi-objective optimization model was developed to optimize supply chain activities (Liu et al., 2019; Attiaa et al., 2019); 

(Gupta et al., 2022). First, it was applied in order to minimize the cost and the emissions and maximize the social benefit 

within the four phases of the supply chain (Gupta et al., 2022). To solve the optimization model, the weighted sum approach 

has been employed (Gupta et al., 2022). The two-stage multi-objective equilibrium optimization approach was utilized to 

evaluate demand uncertainty and manage distribution demand ambiguity (Liu et al., 2019). Using the same methodology, an 

optimization model that minimizes the total cost and maximizes revenue in a hydrocarbon supply chain (supply chain of oil 

and gas) was developed. Thus, sustainability and environmental constraints were used to reduce the depletion rate and restrict 

CO2 release (Attiaa et al., 2019).  

Furthermore, a literature review has been conducted to investigate the application of optimization and simulation 

models, machine learning methods, and fuzzy techniques in sustainable transportation systems. Taking into account the 

complexity of sustainable transportation systems, it was asserted that hybrid methods, such as simulation with fuzzy 

optimization methods or optimization and machine learning methods, are suitable solutions in this case (Torre et al., 2021). 

On the other hand, the multi-objective linear programming optimization model was employed to provide a three objectives 
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model concurrently optimizing stock, economic, and environmental issues in designing and handling modern sustainable 

supply chain networks (Yavari and Geraeli, 2019). Additionally, the mixed-integer linear programming (MILP) model has 

been used to minimize the cost and environmental pollutants. As well as a robust MILP model was developed for the problem 

under uncertainty (Bortolini et al., 2022). Besides, the reverse supply chain model with demand disruptions has been explored 

to drive optimal pricing, sustainability level, and the decisions of corporate social responsibility (CSR) (Hosseini-Motlagha 

et al., 2019). 

In addition, stochastic mixed-integer programming has been used so as to improve the resilience and optimize supply 

chain operations under ripple effects driven by risks of regional pandemic disruption spreading from a single primary source 

location and inducing delayed regional disruptions of different durations in other regions (Sawik, 2022). An optimal solution 

was provided by using Mixed Integer Linear Programming and two other optimization methods, multiple regression and 

autoregressive integrated moving average (ARIMA) forecasting. The study seeks to estimate the quantity and size of 

Liquefied Natural Gas (LNG) bunker barges, as well as the ideal allocation and distribution network inside a ship-to-ship 

bunkering framework. Additionally, a robust mixed-integer linear programming model was used to reduce the vendor's 

expenses while forecasting LNG sales over a particular time horizon. (Doymus et al., 2022)  

The bi-objective optimization model has been adopted for forest-based biomass supply chains and a blood supply chain 

simultaneously (Ahmadvand et al., 2021; Hosseini‑Motlagh et al., 2019). While the objective of the first study was to 

minimize the upstream supply chain costs and the negative deviations of monthly inventory from the safety stock 

(Ahmadvand et al., 2021), the goal of the other research was to determine the optimal location-allocation as well as inventory 

management decisions and to reduce the overall cost of the supply chain, which include fixed costs, operating costs, inventory 

holding costs, wastage costs, and transport costs, in addition to minimizing the substitution levels to provide safer blood 

transfusion services. The robust optimization approach was combined with the TH method in order to reduce the uncertainty 

of the blood supply chain environment (Hosseini‑Motlagh et al., 2019).  

To enhance resilience in a healthcare supply chain during the COVID-19 pandemic, the multi-period multi-objective 

distributional robust optimization framework was applied. The goal was to provide reliable solutions over the trade-off 

between cost minimization and service level maximization by applying the ∊-constraint approach. (Ash et al., 2022). On the 

other hand, a non-linear and multi-objective optimization has been implemented to improve the resilience of a green supply 

chain (Hasani et al., 2020). 

Robust optimization and Monte Carlo Simulation were combined, intending to optimize the forest-based biomass supply 

chain for syngas production at the tactical level considering uncertainties (Ahmadvand and Sowlati, 2022). To improve the 

efficiency of inventory management and, implicitly, an optimal replenishment time, the Q-learning was implemented (Wang 

and Lin, 2021). Moreover, the 5G Network and Markov Model have been utilized so as to optimize an industrial supply chain 

(Li et al., 2021). In addition, in order to design routes in the first place and to compute products and raw material flows, a 

standard decomposition technique was employed (Vitale et al., 2022). A framework has been developed to optimize the 

modular manufacturing supply chain. 

The first step in the approach was to collect the data. The gathered data will be given as input to a classifier (Support 

Vector Machine (SVM), Decision trees). Then, after the assessment step, the algebraic equation of the predictor will be 

determined. In the final step, the feasibility of the process by incorporating all the classifiers is represented (Bhosekar and 

Ierapetritou, 2020). Machine learning was also used in a pharmaceutical supply chain, in which a comparison was carried out 

(Konovalenko and Ludwig, 2021). The projected stochastic gradient (PSG) method was employed to improve the supply 

chain management analysis efficiency (Alkahtani, 2022). A literature review has been carried out in order to present the 

research gap that concerns the simulation-optimization techniques for the design and evaluation of robust supply chain 

networks in unpredictable environments (Tordecilla et al., 2020). The artificial neural network was combined with a genetic 

algorithm aiming to optimize manufacturing resource configuration for small and medium-sized enterprises and also for 

model simulation and data relationship recognition simultaneously (Teerasoponpong and Sopadang, 2020). Edge computing 

was applied on agriculture supply chain architecture to optimize efficiency (Cui, 2021). Based on the fuzzy decision-making 

model in the internet of things, an optimization method was proposed to solve the Internet of Things (IoT) technology’s 

fluency in the supply chain operation and allocation of resources that affect the supply chain and create management problems 

(Yue and Chen, 2018). Simulation-based optimization was deployed in the context of inventory management to control multi-

echelon inventory taking into consideration the order uncertainty (Zhao and Wang, 2018). 

So as to minimize the supply chain cost, the production capacity, batch size in each delivery, number of shipments, lead 

time, the chance of transition from uncontrolled to controlled state, safety factors, and backorder price reduction have been 

optimized (Sarkar and Chung, 2021). To solve the proposed model numerically, three different algorithms were deployed 

(Sarkar and Chung, 2021). Deep reinforcement learning was used in a blockchain-based Agri-Food supply chain so as to 

increase the company’s profit and improve the effective traceability and management of agri-food products (Chen et al., 

2021). A two-part advanced shipping system was proposed aiming to optimize the order dispatch operations and delivery 

time prediction in an intelligent logistics environment (Issaoui et al., 2022). On the other hand, an algorithm based on the 
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Generalized Benders Decomposition (GBD) method was employed in order to resolve the optimization model of routing, 

inventory, and location in the supply chain network design (SCND) problem (Zheng et al., 2019).  

 

2.2 On-stock Supply Chain Optimization 

We performed a literature review of the various methods that have been applied in on-stock supply chain optimization in the 

previous research.  

The use of reinforcement learning (RL) was investigated to optimize the safety stock level and the order quantity rule 

in a linear chain of an independent agent by utilizing critic and actor neural networks. The analytical-based method was 

adopted to provide the optimal safety stock allocation and how much inventory should be kept in each location. Then, three 

algorithms of RL were tested to find the safety stock level from the agent states, agent actions, and environment model. The 

results suggest that Q-Learning is a successful method; nevertheless, this method expects a discrete action space, which does 

not exist in this case (Kosasih and Brintrup, 2021). 

Several researches have been done concerning supplier selection and order allocation planning. In order to accomplish 

that, a forecasting procedure was employed with an optimization model. All the methods reviewed integrated various machine 

learning techniques in the supplier selection process and have focused on the supplier selection process (Islam et al., 2021). 

However, supplier selection and order allocation have been studied, and the Relational Regressor Chain (RRC) method, 

Holt’s Linear Trend, and the Auto-Regressive Integrated Moving Average methods were integrated to forecast demand. The 

methods were tested and compared by applying The Root Mean Square Error (RMSE) and the Mean Absolute Percentage 

Error (MAPE) in order to measure the errors. In the second step, the forecasted demands are fed into the optimization model, 

which considers two different optimization techniques: the weighted-sum method and the ε-constraint technique. The two 

approaches were compared, and the one with a higher efficiency was chosen. Consequently, the RRC method outperformed 

two other regression methods, namely polynomial regression and support vector machine (Islam et al., 2021). 

The artificial neural networks (ANNs) and a robust metamodel-based simulation-optimization approach were combined 

to determine near-optimal safety stock levels in a multi-product supply chain concerning deviations of its overall cost. The 

metamodel-based simulation optimization method was applied to find robust optimal inventory levels in the first step. Then, 

the ANN was used in the second step, where the decision and environment variables are defined as the coefficients of 

predefined inventory levels and the coefficients of demand variations, respectively (Sharifnia et al., 2021).  

The method ARIMA was used in order to forecast the price of raw materials based on historical data and identify 

opportunities to buy the stock at a lower cost and sell a portion of the unused stock to generate additional profits for the 

organization. The eXtreme Gradient Boosting (XGBoost) regression model was employed to perform demand forecasting. A 

combinatorial optimization model is also used to decide whether to order or sell based on the forecasted price, demand, and 

other variables (Namir et al., 2021). 

Rather than machine learning, for example, the Q-model was employed to predict better planning for the production or 

sale of other parts of the supply chain. Based on the cost of the non-availability of product in stock, the probability of demand, 

the unit cost of product shortage, and the number of orders per year, the Supplemental Inventory Cost can be recognized 

(Atyeh, 2020). However, A literature review was derived to determine the inventory drivers, and then choose the case study 

based on the pre-determined criteria to collect data. Based on the case study, the inventory drivers were determined. The 

simulation program was configurated to recommend the best supply chain configuration. The input data analysis of the 

simulation program was daily demand, input safety stock, and shipping quantities, and the output data were two key 

performance indicators: actual daily safety stock and actual daily cycle stock. According to this research findings, establishing 

a product classification yields more benefits than minimizing the lead time or boosting delivery frequency. Product 

classification is particularly beneficial if the goal is to reduce the amount of stock on hand (Chinello et al., 2020).  

Furthermore, a mixed-integer linear programming model is employed to optimize supply chains, specifically to model 

and optimize a food supply chain that considers a circular economy. The coffee cherries consumption, the consumption of 

water, the waste generation and CO2 emissions were included to evaluate the mathematical model (Baratsas et al., 2021). 

However, an approach was developed to optimize procurement, inventory, production, and distribution decisions for each 

period of the planning horizon. A set of cost variables was taken into account, raw material costs, pickup costs, delivery costs, 

production costs, and inventory costs, in order to precise another set of quantities: the quantity of raw material to be purchased 

from each raw material source, the quantity of each type of product to be manufactured in each plant, the pickup, and delivery 

routes to be used, the quantity of raw material to be collected by each pickup vehicle from any visited raw material-source, 

the number of products to be unloaded at any visited retailer by each delivery vehicle. As a result, this study proposes a 

decomposition approach for determining raw material and product flows in a linear multi-product supply chain (Cóccola et 

al., 2022). 

Performance drivers are the variables that can identify, clarify, create, and drive final results. Hence, to build visibility 

on the supply chain and optimize its performance, it is crucial to understand the complexity of the interaction between 
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different performance drivers. Several of the previously reviewed methods have focused on how to study these interactions 

and enhance the supply chain performance (Vignieri, 2016).  

The suggested methods do not cover all the on-stock supply chain blocks; only the state elements of the global chains 

have been taken into account. We conclude that these methods are non-generalized. They concentrate on the specific rather 

than the global. 

 

2.3 Delivery Delays in On-stock Supply Chains 

The intricate issue of inventory control in a challenging environment marked by supply delays, concurrent orders, and an 

emergency supplier with no delays is addressed in one of the previous researches. The study's key objectives are motivated 

by the growing significance of effectively managing inventory within the context of just-in-time manufacturing and the 

prevailing trend toward smaller inventory orders. A stochastic control framework for inventory management is successfully 

established in the paper, illustrating that modeling instant supplies with zero lead times as a stochastic control problem with 

a reflection boundary equal to the cost of such supplies when the inventory is depleted (Agnes and Charles, 1995). 

A comprehensive analysis is conducted on the pervasive supply-chain disruptions and extended delivery times observed 

in the post-COVID era. The primary focus lies in quantifying the far-reaching effects of these disruptions on the overall 

economy, utilizing a dynamic general equilibrium model enriched with input-output linkages and supply chain complexities. 

Significantly adverse effects are observed, with consumer prices experiencing a notable rise of approximately seven percent 

when deflated by wages. This surge is attributed to firms adjusting prices to cope with constrained supply. Firms, in response 

to the challenges, adapt their inventory strategies, influencing order timing and the balance between domestic and imported 

inputs (George et al., 2023). 

In order to investigate strategies aimed at enhancing supply chain delivery performance, a cost-based analytical model 

is employed. This model serves to assess the expected penalty cost associated with both early and late deliveries. The central 

focus of the research is the optimization of the delivery window's position within supply chains, taking into consideration 

factors such as the width of the delivery window, penalty costs for untimely deliveries, and the parameters of the delivery 

time distribution. Through the development of analytical propositions, the paper analyzes the impact of these factors on 

delivery performance, with a specific emphasis on cost reduction strategies. The results demonstrate that increasing the width 

of the on-time portion of the delivery window, lowering penalties for untimely deliveries, and reducing the variance of the 

delivery time distribution can significantly improve delivery performance. These findings also provide valuable insights for 

negotiations in supplier and buyer contracts, as well as informed decision-making in investment initiatives focused on 

enhancing delivery performance (Maxim, 2018). 

In order to tackle the challenge of optimizing the vendor-buyer cooperation strategy within a supply chain network 

characterized by constant demand and a variable delivery lead time distribution, the paper aims to minimize the integrated 

expected cost. The research takes into account key decision variables, namely the reorder point, delivery lot size, number of 

deliveries, and delivery time thresholds. Given the absence of readily available closed-form solutions, the paper utilizes 

diverse search procedures to identify integer solutions. Through the presentation of numerical results across various delivery 

lead time distributions, including uniform, exponential, and normal, the paper seeks to establish the broad applicability of the 

proposed model (Monami and Bhaba, 2021). 

Supply chain optimization is a critical area of study, and various mathematical modeling and analysis techniques have 

been employed to address its complexity. Mathematical optimization models, such as linear programming and mixed-integer 

linear programming, are effective for cost minimization and resource allocation but face challenges in handling uncertainty 

and intricate interactions within supply chains. Multi-objective optimization, on the other hand, offers a holistic view by 

balancing conflicting goals like cost reduction and sustainability. However, it can be computationally intensive and 

challenging to implement. Machine Learning techniques, including regression analysis, decision trees, support vector 

machines, and neural networks, provide flexibility in handling complex data but often require substantial labeled datasets. 

Discrete event simulation is used to model supply chain processes, capturing real-world complexity, yet it demands significant 

computational resources. Some studies propose hybrid approaches, combining optimization, simulation, and machine 

learning to address diverse challenges. Transportation and distribution network optimization studies focus on route 

optimization, vehicle allocation, and demand forecasting. Inventory management researches delve into optimizing safety 

stock levels, order quantities, and supplier selection, a crucial aspect of on-stock supply chains. Finally, a subset of studies 

investigates strategies for supply chain resilience, particularly in the face of disruptions like pandemics, with the goal of 

enhancing adaptability to unforeseen events. 

In conclusion, the field of supply chain optimization is marked by its complexity, data challenges, and computational 

intensity. Hybrid approaches, combining optimization, simulation, and Machine Learning, demonstrate the potential in 

providing holistic solutions to multifaceted supply chain problems. These insights collectively advocate for the integration of 

Machine Learning into the realm of on-stock supply chain optimization, particularly in the context of optimizing delivery 
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performance and mitigating delivery delays, paving the way for more informed and adaptive decision-making in these 

intricate systems. 

One notable gap in the existing body of research on on-stock supply chain optimization, which includes various aspects 

such as sustainability, inventory management, and transportation, is the limited attention given to the holistic and 

interconnected nature of these supply chains. While these studies offer valuable insights into individual components of supply 

chain management, they often overlook the critical issue of decoupling within the broader supply chain system. The 

decoupling problem, which arises when attempting to model and optimize the entire on-stock supply chain, becomes 

particularly evident when addressing delivery delays. Existing research tends to isolate specific aspects of the supply chain 

for optimization, thus failing to capture the intricate interactions and dependencies that emerge in a real-world, end-to-end 

supply chain scenario. 

After a thorough examination of the research papers that delve into the enhancement of delivery performance within 

on-stock supply chains, it becomes evident that the majority of these studies have neglected to address the decoupling 

problem. These investigations predominantly concentrate on improving delivery efficiency from the supplier's perspective, 

emphasizing the reduction of delays, enhancement of delivery accuracy, and mitigation of associated penalty costs. In pursuit 

of these objectives, researchers often resort to simplifying assumptions to create manageable mathematical models and 

conduct empirical analyses. These assumptions typically involve envisioning a simplified supply chain structure with a linear 

progression from procurement to delivery. This simplified perspective intentionally sidesteps the complexities inherent in 

multi-stage supply chains, decision interdependencies, and dynamic coordination, complexities that are intrinsically linked 

to the decoupling problem but do not align with the immediate objectives of these studies. 

Furthermore, a critical oversight in these studies is the lack of consideration for the inherent misalignment and absence 

of coordination between procurement and expedition processes within on-stock supply chains. The strategies required to 

synchronize these processes or explore the implications of their independence are rarely explicitly incorporated. Instead, the 

research predominantly centers around optimizing individual elements of the supply chain, such as lead time variability or 

delivery schedules, without examining their intricate interplay. Consequently, the primary aim of these studies is to provide 

practical solutions for enhancing delivery performance, which is undoubtedly a vital aspect of on-stock supply chain 

management. Nevertheless, it is apparent that addressing the decoupling problem presents a separate research challenge due 

to its distinct nature and considerable complexity. Therefore, there is a pressing need for dedicated research activities to 

explore the intricacies and obstacles associated with decoupling within the realm of on-stock supply chain management. 

 

3. MATERIALS AND METHODS 
 

In order to tackle the intricate decoupling challenge within on-stock supply chains, particularly the prevalent issue of delivery 

delays, our research endeavors to construct a comprehensive methodology that harnesses the power of ML techniques. This 

methodology serves as a bridge between DES and ML, facilitating the linkage of evaluation parameters within the on-stock 

chain, with a specific focus on delivery delays, to their corresponding action parameters. In this section, we delineate our 

systematic approach for achieving these research objectives. By establishing a robust connection between evaluation and 

action parameters in the context of on-stock supply chains, we gain the ability to discern the variables that contribute to the 

occurrence of delivery delays, and we also solve the decoupling problem. More importantly, this linkage empowers us to 

formulate a mathematical equation, a theoretical framework, which encapsulates the relationships among these parameters. 

This equation becomes a valuable tool for automating the optimization of on-stock chain activities. To clarify further, our 

mathematical equation will serve as a quantitative representation of the on-stock chain's dynamics, where various factors and 

operational constraints are mathematically defined. Leveraging mathematical optimization methods, we can fine-tune this 

equation based on real-world constraints. In essence, our research seeks to create a theoretical framework that integrates ML 

techniques with DES, enabling us to establish a mathematical equation representing on-stock supply chain dynamics. This 

equation, once calibrated with real-world constraints, facilitates the automatic optimization of on-stock chain activities and 

empowers proactive decision-making to mitigate delivery delays. 

 

Step 1: Problem specification consists of describing the processes in the on-stock supply chain. Thus, it presents the 

problem to solve in this chain and specifies the evaluation and the decision variables.   

 

Step 2: In the context of on-stock supply chains, obtaining labeled datasets, which are vital for machine learning, can 

be challenging due to the indirect linkage between action parameters and evaluation parameters. To overcome this challenge, 

we turn to discrete event simulation (DES). DES serves as a foundational step in our methodology, enabling us to model, 

simulate, and analyze the intricate dynamics of the supply chain system. By constructing a conceptual framework through 

DES, we create a simulated environment that closely mirrors the real-world supply chain. 
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The discrete-event simulation (DES) comprises modeling, simulating, and analyzing systems using computational and 

mathematical methodologies while constructing a model construct of a conceptual framework that explains a system. The 

system is simulated by executing experiments using a computer simulation of the model and analyzing the results to generate 

findings that aid in decision-making. Industry and academics have embraced discrete event simulation technologies to solve 

several industrial difficulties. By the conclusion of the last decades, the simulation software business is going through a phase 

of consolidation (Babulak and Wang, 2008). 

Conceptual modeling:  Conceptual modeling is critical to establish a formalism for modeling the principles of operating 

production and distribution processes (Babulak and Wang, 2008). 

Developing the simulation model: The modeling phase includes the simulation project based on the parameters defined 

in the first context to gather the labeled data set required in the next step. 

Data overview: This phase entails defining the set of parameters that would be used to implement the simulator program 

(Benmoussa, 2021). 

Simulator programming: Programming the simulator ARENA consists of designing a model of the existing system and 

conducting experiments on this model, then interpreting the observations provided by the running of the model and 

formulating decisions relating to the system (Bouhenni, 2022). 

 

Step 3: In this phase, it is fundamental to accurately examine the data set in order to understand their role and the impacts 

they can have on our prediction objective. This study involves a description of the data (name, type), as well as various 

processes such as cleaning (deleting useless data, searching for missing data). Finally, the combination between them, also 

called aggregation, in order to have a set of knowledge (observations) usable and appropriate for learning and achieving our 

goal (Vannieuwenhuyze, 2019). 

The visualization of the data is one of the data exploration tools. (Sansen, 2017) The visual representation of the data 

allows an understanding of the distribution of the data set. Thereby, the data analysis helps understand the interaction between 

the variables before the data exploration comes. 

 

Step 4: In this pivotal stage of our research, our primary objective is to identify the most accurate prediction model for 

our generated data, a critical step in our overarching goal of formalizing the on-stock supply chain. To accomplish this, we 

turn to the realm of ML, a field deeply rooted in pattern recognition and computational learning. Machine Learning offers us 

a potent toolkit to glean valuable insights from data and generate predictions, an essential endeavor in the complex world of 

supply chain management (Rupasinghe, 2017). Given the intricate nature of our research, which revolves around bridging 

the gap between evaluation parameters (independent variables) and action parameters (dependent variables) within the on-

stock supply chain, selecting the appropriate category of ML algorithms becomes paramount. ML algorithms are categorized 

into three broad types: supervised, unsupervised, and reinforced learning models (Lickert et al., 2021).  

In our specific case, the choice of supervised learning shines as the most fitting approach because of several causes. The 

first one is that supervised learning is explicitly engineered for predictive modeling, aligning seamlessly with our core 

objective of establishing a mathematical relationship between independent variables and dependent variables. Therefore, 

supervised learning thrives on labeled datasets comprising both input features and their corresponding target outputs. In our 

context, this means we can leverage historical data that intimately connects evaluation parameters with actual actions and 

their resulting outcomes. It also excels in crafting predictive models that can be expressed as mathematical formulas or 

equations. This perfectly aligns with our mission to derive a formula linking evaluation and action variables, enabling data-

driven decision-making and optimization.  

In our pursuit of establishing a mathematical formula that precisely links evaluation parameters to action parameters 

within the on-stock supply chain, regression algorithms emerge as the optimal choice over classification and decision tree 

algorithms. Regression techniques are inherently designed to model relationships between variables by identifying patterns, 

trends, and dependencies within data. Unlike classification, which is primarily concerned with assigning data points to 

discrete categories, and decision trees, which focus on classification and branching decision paths, regression algorithms are 

expressly geared towards the creation of mathematical equations that express the quantitative relationship between 

independent and dependent variables. This alignment with our goal of formulating a mathematical formula makes regression 

algorithms the preferred choice, as they enable us to express the nuanced, continuous connection between evaluation and 

action variables in a manner that classification and decision trees simply cannot replicate. 

Regression: Regression analysis performs a sequence of parametric or non-parametric estimations. The method finds 

the causal relationship between the input and output variables. The estimation function can be determined by experience 

using a priori knowledge or visual data observation. Regression analysis aimed to understand how the typical values of the 

output variables change while the input variables are held unchanged (Franchitti, 2022). 

Linear Regression: The linear equation describes the connection of dependent and independent variables. Thus, both 

input and output are numeric data, which must be cardinal to complete mathematical equations. This algorithm class is 
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sensitive to data outliers and frequently fails when applied to noncorrected real data. The models for interpretability can be 

seen. (Lickert et al., 2021) 

Ridge/Lasso Regression: Ridge and lasso regression is a linear regression model; hence, the prediction formula is the 

same as conventional least squares. They use coefficients (w) that predict well on training data and fit an additional restriction. 

(Müller and Guido, 2016) 

Polynomial Regression: Polynomial regression is a regression-type analysis that models the link between independent 

and dependent variables using nth-degree polynomials (Maulud and Abdulazeez, 2020). 

 

Step 5: In this phase, we aim to present the results of our learning model. Moreover, it consists of adjusting and 

correcting the learning model if necessary.   

Learning assessment: The first step entails the training algorithm by giving it a data set; then, we evaluate it on the 

second set of data to ensure the non-existence of an overlearning (Benmoussa, 2021). 

Prediction: The model is deployed in production to make predictions and, if necessary, to retrain and improve the model 

using new input data (Benmoussa, 2021). 

Overfitting and underfitting:  Overfitting is a phenomenon where the solution is too well adapted to the training data 

and does not generalize to new and unknown data. Thus, if, for an algorithm, we obtain an accuracy of 99% on the training 

data and we obtain a value of 20% on the test data, it is likely that we are in the presence of overfitting. The phenomenon of 

underfitting occurs when the algorithm fails to find a correlation between the training data and, therefore, fails to make good 

predictions (Vannieuwenhuyze, 2019). Figure 1 represents the methodology employed. 

 

 
 

Figure 1. methodology 

4. CASE STUDY 
 

4.1 Problem Specification 

 

We consider the situation of a corporation that manufactures on stock and distributes products on demand. The studied supply 

chain consists of two main processes: Manufacturing and Distribution. The pieces go through three steps of production during 

the manufacturing process. Each station is equipped with an operator. The pieces must be transported from station 1 to station 

2 and then from station 2 to station 3 by a forklift; they must be assembled into a batch before moving from station 1 to station 

2 or from 2 to 3. 
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An order triggers the distribution process. When the stock is depleted, the orders are put on hold until the stock is 

replenished. First, the orders would be prepared by an operator. The time it takes is proportional to the quantity ordered. 

Secondly, the delivery is done by two trucks. The time it takes is proportional to the round-trip distance to and from the 

customer. Due to the theoretical delay in delivery, customers do not receive their orders on time. This delay is caused by 

production and delivery-related factors. The objective is to develop a model that establishes a relationship between the 

theoretical delay and the other variables using machine learning to find mathematical modeling of the theoretical delay created 

in an on-stock supply chain. 

This scenario illustrates the decoupling problem, where the disconnection between production and distribution processes 

leads to delays and operational challenges in meeting customer demands, and how the mathematical modeling via the DES 

and ML is a suitable approach not only to identify and analyze these delays but also to devise optimized strategies and 

interventions that can effectively mitigate these challenges, ultimately resulting in improved supply chain performance and 

enhanced customer satisfaction. 

 

4.2 Data Generation Through Discrete Event Simulation 

4.2.1 Conceptual Modeling 

In the conceptual models depicted in figures 2 and 3, it becomes evident that the two fundamental processes within the on-

stock supply chain, namely Manufacturing and Distribution, operate in a decoupled manner. This decoupling is of paramount 

significance as it highlights the distinctive objectives of each process. In the manufacturing process, the primary aim is to 

produce products and push them into inventory. This means that the production stations are geared towards generating 

products without direct consideration for specific customer orders. On the other hand, the distribution process focuses on 

handling customer orders, decreasing inventory, and preparing orders for delivery. The significance lies in the fact that these 

two processes are decoupled, meaning they operate independently and are not explicitly linked since the products will be 

manufactured whether a customer order has been received or not. This separation can lead to potential challenges. For 

instance, if customer orders exceed the quantity of products manufactured, there may be stock shortages, potentially resulting 

in unfulfilled orders and customer dissatisfaction. Conversely, if the manufacturing process produces more than the incoming 

orders, overstocking may occur, leading to increased carrying costs and potential obsolescence. Thus, the decoupling problem 

in this on-stock supply chain stems from the lack of synchronization between production and demand, underscoring the need 

for a comprehensive model to bridge this gap and optimize the supply chain's logistics performance.  

Figures 2 and 3 illustrate the conceptual models associated with the manufacturing and distribution processes that are 

appropriate for our research: 

 

4.2.2 Data Overview 

For the production process, three resources are used: Operator Station1, Operator Station2, and Operator Station3, that are 

separated sequentially at the three manufacturing stations. Each station is executed according to the regular law Normal (10,2) 

minute. Between the three stations, two transfers are positioned, with each being performed batch by batch by a forklift. The 

first transfer occurs at a Normal (45,5) minute, while the second transfer occurs at a Normal (30,5) minute. 

The integer values of the ordered quantities follow the triangle law Triangularine (1, 10, 15). Each order's preparation 

time is proportional to the quantity ordered: 0.1 hours * Quantity. The distribution is handled by two trucks, with a capacity 

of 20 products. The distance follows the triangle law Triangularine (5, 100, 400 km). The truck's average speed is 70 

kilometers per hour. 

 

4.2.3 Simulator Programming 

The model created in figure 4 was converted into a simulation program in the ARENA simulator. Figure 4 shows the program 

that was built. In the simulation program using the ARENA simulator, the manufacturing process begins with the 

"Planification" module, which generates pieces at regular interval of every 10 minutes. These pieces then proceed to "Station 

1," where each individual piece undergoes manufacturing with an "Operator Station1". This station follows a regular normal 

distribution (10,2) for its processing time, meaning that each product takes an average of 10 minutes to complete, with a 

standard deviation of 2 minutes. After completion at "Station 1," the pieces are individually sent to the "Batch T1" module. 

In the "Batch T1" module, these individual pieces are aggregated into a batch. The batched products are subsequently 

transferred batch by batch in the "Transfer 1" module using a forklift. The transfer time follows a normal distribution (45,5) 

minute. 

The batches then progress to "Separate T1," where batches are separated into individual pieces. Each individual piece 

is subsequently processed in "Station 2". Each individual piece is processed with an “Operator Station2”, with processing 
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times following the normal distribution (10,2) minutes. After processing, individual pieces are aggregated into batches in 

"Batch T2”. The batched products are subsequently transferred batch by batch in the "Transfer 2" module using a forklift. 

The transfer time follows a normal distribution (30,5) minute. 

 

  
 

Figure 2. Manufacturing process 

 

 

 

Figure 3. Distribution process 

 
 

Figure 4. ARENA Flowchart 
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Following "Transfer 2," the process proceeds to "Separate T2," where batches are once again separated into individual 

pieces. Individual pieces then undergo manufacturing at "Station 3," with processing times following a normal distribution 

(10,2) minutes. The products move to an "Assign" module, which increments the stock levels, reflecting the completion of 

the manufacturing process. Subsequently, a "Record" module calculates the cycle time, and the process concludes with 

"Dispose," which ends the manufacturing process. 

The delivery process begins with the "Customer Order" module, which generates customer orders each hour. These 

orders exhibit variability in terms of quantity, following a triangular distribution with parameters (1, 10, 15) reflecting diverse 

order sizes. Following by an "Assign" module in which we define the preparation time for each order and quantity, with the 

preparation time being directly proportional to the quantity ordered. Specifically, it is determined as 0.1 hours multiplied by 

the quantity. Afterward, a " hold " module is employed to conduct a capacity check. Here, the program verifies whether the 

quantity ordered is within the bounds of available stock, ensuring that orders can only be fulfilled if there is sufficient stock. 

Followed by an "Assign" module, which decrements the stock levels. The process enters the "Preparation" module, where a 

dedicated operator prepares the orders based on their specified quantities. Once the preparation is complete, the orders move 

on to the "Delivery" module. In this module, the expedition is carried out using two trucks. The distance traveled follows a 

triangular distribution with parameters (5, 100, 400 km), while the average speed of the trucks is set at 70 kilometers per 

hour. 

Finally, the process concludes with "End Distribution" after a "Record" module, where the theoretical delay is 

calculated. This module provides insights into the system's performance and enables the evaluation of potential delays in 

fulfilling customer orders, contributing to a comprehensive understanding of the delivery process within the on-stock supply 

chain simulation program. 

 

4.3 Data Preprocessing and Exploration 

4.3.1 Data Preparation and Cleaning 

We possess nine variables: Truck, Size Batch 1, Size Batch 2, Operator Preparation, Operator Station 1, Operator Station 2, 

Operator Station 3, Forklift, and Preparation Time; each variable has a minimum and maximum value as well as a step in 

between. Table 1 lists the nine variables and their associated values. 

 

Table 1. Decision variables and their associated values 

 

Category Name Element sort Sort Minimal value 
Suggested 

value 
Maximal Value Step 

Resources Truck Resource Discrete 1 2 4 1 

User Specified Size Batch 1 Variable Discrete 4 5 10 1 

User Specified Size Batch 2 Variable Discrete 4 5 10 1 

Resources Operator Preparation Resource Discrete 1 1 2 1 

Resources Operator Station 1 Resource Discrete 1 1 2 1 

Resources Operator Station 2 Resource Discrete 1 1 2 1 

Resources Operator Station 3 Resource Discrete 1 1 2 1 

Resources Forklift Resource Discrete 2 2 4 1 

User Specified Preparation Time Variable Discrete 0.05 0.1 0.3 0.05 

 

We used OptQuest to explore all possible scenarios. Within OptQuest, we specified the variables, their potential values 

and theoretical delay. Moreover, we imposed constraints on the optimization process. These constraints are Operator 

Preparation + Operator Station 1 + Operator Station 2 + Operator Station 3 <= 6 and Truck + Forklift<= 7, as well as ensuring 

that truck utilization remains above 70% and forklift utilization above 60%. We obtained thus a CSV file that contains a total 

of 2602 combinations of the nine variables, each associated with its corresponding theoretical delay. 

The results were exported, providing a comprehensive dataset for further analysis and modeling in our ML algorithms. 

In the first step, we separate the data that are going to be helpful in the ML regression algorithms. Thus, we attempted to 

construct a CSV file including the variables and the theoretical delay.  

As mentioned in Scikit-learn documentation, the preprocessing package contains various standard utility functions and 

transformer classes that allow changing the raw feature vectors into a more suitable representation for the downstream 

estimators. We employed the StandardScaler utility class in the preprocessing module to normalize the data set to unify the 

scaling individual samples norm. 
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4.3.2 Exploring and Analyzing The Data 

Mean, Standard Deviation, Min, Max and Quartiles 

We calculated the mean and standard deviation of our evaluation variable to analyze the distribution of our data:  

 

Table 2. Mean, standard deviation, min, max and quartiles 

 

Variable Number Mean Min Max Standard Deviation Q1 Median Q3 

Theoretical Delay 2602 24.244 6.98 53.02 13.340 14.049 17.315 39.322 

 

We conclude that 25% of the theoretical delay values are lower or equal to 14.049, also 50% and 70% are lower or equal 

to 17,315 and 39,322. The standard deviation value is equal to 13.340, which can be considered a high value. We conclude 

that the data are well dispersed. We notice that the minimum value is too small compared with the maximum, which returns 

to the fact that we took all the combinations possible of the variable’s values and the corresponding theoretical delay value 

while respecting the constraint system. 

 

Correlation of The Variables 

We aim to study the relationship between each variable and the theoretical delay. In order to achieve that, we calculated the 

theoretical delay average for each variable’s value. The following table represents the results obtained: 

 

Table 3. The theoretical delay average for each variable values 

 

Variables Values Theoretical delay 

Truck 

1 44,41699919 

2 20,81934568 

3 19,82843745 

4 21,1167013 

Size Batch 1 

4 27,7289564 

5 19,67499367 

6 19,88569968 

7 23,19078234 

8 22,66272141 

9 26,49546103 

10 27,43653814 

Size Batch 2 

4 27,62718618 

5 20,71853365 

6 21,2419297 

7 21,00666157 

8 22,88238834 

9 25,87225323 

10 27,33665876 

Operator Preparation 
1 29,12486912 

2 18,50694215 

Operator Station 1 
1 22,58128501 

2 26,47630319 

Operator Station 2 
1 24,21675438 

2 24,28848482 

Operator Station 3 
1 23,56914054 

2 24,97471264 

Forklift 

2 23,21891016 

3 21,9177095 

4 27,28788002 
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Preparation Time 

0,05 19,39582642 

0,1 16,47386245 

0,15 16,52593282 

0,2 24,95410324 

0,25 30,51031009 

0,3 36,38465891 

 

In our analysis of the nine variables and their connection to theoretical delay, several interesting trends emerged. To 

begin with, we observed a significant and strong negative correlation (approximately -0.767) between the number of trucks 

and theoretical delay. This indicates that as the number of trucks increased, the theoretical delay decreased. Furthermore, 

when we delved into Size Batch 1 and Size Batch 2, we found relatively weak positive correlations (about 0.351 and 0.279, 

respectively) with theoretical delay. Moreover, it was unnecessary to compute the correlation coefficient for the Operator 

Preparation, Operator Station 1, Operator Station 2, and Operator Station 3 since they take only two values, but it was clear 

that as the operator's value increased, there was a significant reduction in theoretical delay. Besides, our examination of 

Forklift and Preparation Time revealed strong positive correlations (approximately 0.726 and 0.891, respectively) with 

theoretical delay. This suggests a huge influence on the theoretical delay, implying that as Forklift and Preparation Time 

values increased, the theoretical delay also increased significantly. 

Additionally, it's worth noting that while analyzing the theoretical delay, we observed random results for each variable; 

the average theoretical delay is supposed to decrease when the truck value increases, which was not our case; the values 

decrease, and when we reach four trucks, it increases to 21.11. These unexpected results can be attributed to the constraints 

we applied in our analysis. Specifically, we imposed constraints such as Operator Preparation + Operator Station 1 + Operator 

Station 2 + Operator Station 3 <= 6 and Truck + Forklift <= 7, as well as ensuring that truck utilization remains above 70% 

and forklift utilization above 60%. Therefore, when, for instance number of trucks is equal to 4, the number of forklifts should 

be less or equal to 3, which results in increasing the theoretical delay. These constraints likely introduced additional dynamics 

and complexities that influenced the relationship between variables and theoretical delay. 

In conclusion, our analysis has highlighted several important relationships between these variables and theoretical delay. 

It is evident that the number of trucks, forklifts, and the values of operator preparation, operator station 1, operator station 2, 

and operator station 3 all play crucial roles in influencing theoretical delay. Understanding these relationships is essential for 

optimizing processes and minimizing theoretical delay in relevant scenarios. 

 

4.4 Machine Learning Algorithm Selection and Training 

 

In order to create the prediction model, the first step is to read the CSV file and define the model variables. When we use a 

random sampling method, for example, the bootstrap, with a satisfying number of repeats (t≥100) and a reasonable balance 

between training and test set (50–70% for training), we have a huge probability of getting a good model (Xu and Goodacre, 

2018). Consequently, we have split the data set into two categories: 70% of the data was used for the training, and we left 

30% for the test.  

x_train: Parameter matrix (2000 rows, 9 columns) 

y_train: Evaluation parameter vector (2000 rows, one column) 

With x_train is the matrix that contains the set of nine variables Forklift, Preparation Time, Truck, Size Batch 1, Size 

Batch 2, Operator Preparation, Operator Station 1, Operator Station 2, Operator Station 3 and y_train represents the 

corresponding theoretical delays. We tested and compared four supervised machine learning algorithms to predict the 

theoretical delay value for each variable combination. The regression algorithms were manually developed using the linalg 

lstsq function, a defined function in the Numpy library, and it returns the least-squares solution to a linear matrix equation 

(Lathiya, 2022).  

 

4.5 Visualizing The Results, Adjustment or Modification of The Learning Model 

 

4.5.1 Learning Assessment 

 

The training error was calculated to evaluate our learning algorithms: Table 4 summarizes the findings: 
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Table 4. The cumulative training errors of all created ML algorithms 

 

4.5.2 Prediction 

The model was tested by 30% of the combinations, which remained after the training, to push it to predict new values with 

new inputs. 

x_test: Parameter matrix (602 rows, 9 columns) 

y_test: Evaluation parameter vector (602 rows, one column) 

With x_test is the matrix that contains the set of nine variables: Forklift, Preparation Time, Truck, Size Batch 1, Size 

Batch 2, Operator Preparation, Operator Station 1, Operator Station 2, Operator Station 3 and y_train represents the 

corresponding theoretical delays. We have calculated the test error, which gives the following results. 

 

Table 5. Test errors of all created ML algorithms 

 
 Test Error (h) 

Lasso Regression 7,52 

Linear Regression 7,49 

Ridge Regression 7,48 

Polynomial Regression 3.90 

 

4.5.3 Overfitting and Underfitting 

 

In order to be precise if there is overfitting or underfitting in our models, we have measured the accuracy of each algorithm 

on both test and training data. We employed r2_score, defined in the Scikit-learn library, and calculated the coefficient of 

determination depending on Scikit-learn documentation. (Vannieuwenhuyze, 2019) The following table presents the findings: 

 

Table 6. Training and test accuracy 

 

 Training accuracy Test accuracy 

Lasso Regression 0.56 0.52 

Linear Regression 0.59 0.51 

Ridge Regression 0.60 0.88 

Polynomial Regression 0.88 0.86 

 

Furthermost, the training and test accuracy take near values. There is not a noticeable difference between the values. 

Besides, we have mentioned that overfitting is a phenomenon revealed that our model had only memorized our data set, 

which let it have a satisfying result in terms of the training data and very bad results with the test data, which proves the non-

existence of overfitting. We also conclude that the program makes good predictions since we found a higher test accuracy in 

all algorithms. We could claim that there is no underfitting in our model. 

 

5. DISCUSSION AND RESULTS:  

The contribution of this paper is mainly not to artificial intelligence; we add nothing to this discipline. The contribution 

consists of a solution to a problem that conventional approaches (simulation) cannot address on its own and which the 

application of artificial intelligence in combination with these conventional methods can be of tremendous use. So as to 

optimize the on-stock supply chain, there are various approaches. However, all the cases of optimization took into account 

the optimization of the safety stock level and the order quantity, supplier’s selection and order allocation planning, finding 

the near-optimal safety stock levels in a multi-product supply, and identifying the opportunities to buy the stock at a lower 

cost and to sale a portion of the unused stock, but none of these studies involves the optimization of the delivery delays with 

taking into account the global on-stock supply chain. Even those who studied the delivery delays they didn’t take into account 

  Training error in hours (h) 

Lasso Regression 6,95 

Linear Regression 6,93 

Ridge Regression 6,80 

Polynomial Regression 3,72 
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variables that cover the decoupling issues in the on-stock chains, like the variables that are defined in the production and 

procurement processes. It is essential to examine the entire chain while studying delivery delays in order to take into account 

the decoupling problem and optimize the logistic performance in the global on-stock supply chain. The existing studies did 

not cover the on-stock supply chain in its entirety, nor did they address the decoupling issues. 

On the other hand, optimization methods that have been mostly used in the literature are the mixed-integer linear 

programming model, Machine Learning, simulation, and Q-model. These methods can be classified in three categories: 

machine learning, mathematical optimization approaches, or simulation. In some cases, authors used hybrid models 

combining both simulation and machine learning, where machine learning is used to predict variables, and the simulation is 

employed for optimization. The on-stock supply chains exhibit a unique decoupling phenomenon, where production and 

distribution processes operate independently until customer orders trigger the distribution phase.  

Our research aims to fill this critical gap by examining the entire on-stock supply chain and addressing the decoupling 

issues inherent in it. To achieve this, we adopt a two-stage methodology that combines theoretical analysis and empirical 

validation. In the first stage, we conducted a thorough theoretical analysis that led us to develop an approach based on DES 

and ML so as to solve the decoupling problem in the on-stock chain and automatically create a link between evaluation and 

action variables (delivery delays) within this chain, and by doing so, we will optimize their logistic performance. This 

theoretical foundation forms the basis for our subsequent empirical investigation. In the second stage, we utilize an academic 

case study and apply the DES to have the labeled data set which we will need in the regression algorithms. Then, we applied 

these algorithms to mathematically formalize the relationship between the identified variables and delivery delays within on-

stock supply chains. While the case study is not derived from real-world industrial data, it serves as a structured environment 

to explore the effectiveness of our approach to solve the decoupling problem in the on-stock supply chain. The mathematical 

formalization of the theoretical delay and the nine influencing variables in an on-stock chain contributes significantly to our 

research objectives in several ways: 

Theoretical Understanding: It provides a theoretical foundation for understanding the complex interplay of variables 

that impact delivery delays. By mathematically modeling these relationships, we gain insights into the underlying 

mechanisms within on-stock supply chains. 

Optimization Insights: The formalization offers actionable insights for optimizing inventory management and logistics 

activities. By quantifying the impact of variables like forklift availability, batch sizes, operator numbers, and more, we can 

make informed decisions to reduce delivery delays. 

In essence, the formalization of the relationship between variables and delivery delays in on-stock supply chains not 

only demonstrates the applicability of DES and ML as valuable tools for tackling the decoupling problem in on-stock chains 

but also offers theoretical and practical contributions to the broader field of supply chain management by enhancing our 

understanding of delivery delay dynamics and optimization possibilities. 

In terms of results, we picked the polynomial regression algorithm, which had the best accuracy of modeling. We define 

Y and C as follows: 

 

Y = (1,  X1
2 , X2

2  , X3
2  , X4

2  , X5
2  , X6

2  , X7
2  , X8

2  , X9
2  , X1X2, X1X3, X1X4, X1X5 , X1X6 , X1X7, X1X8 , X1X9, X2X3 , X2X4 , X2X5 

, X2X6 , X2X7, X2X8 , X2X9 ,  X3X4 , X3X5 , X3X6 , X3X7, X3X8 , X3X9 ,  X4X5 , X4X6 , X4X7, X4X8 , X4X9 , X5X6 , X5X7, X5X8 , 

X5X9 ,  X6X7, X6X8 , X6X9 , X7X8 , X7X9 , X8X9 , X1, X2 , X3, X4 , X5, X6 , X7, X8 , X9) 

 

C  =  (C1,1 , C2,2 , C3,3 , C4,4 , C5,5 , C6,6 , C7,7 , C8,8 , C9,9 , C10,10 , C1,2 , C1,3 , C1,4 , C1,5 , C1,6 , C1,7 , C1,8 , C1,9 , C1,10 , C2,3 , 

C2,4 , C2,5 , C2,6 , C2,7 , C2,8 , C2,9 , C2,10 , C3,4 , C3,5 , C3,6 , C3,7 , C3,8 , C3,9 , C3,10 , C4,5 , C4,6 , C4,7 , C4,8 , C4,9 ,  C4,10 , C5,6 , 

C5,7 , C5,8 , C5,9 , C5,10 , C6,7 , C6,8 , C6,9 , C6,10 , C7,8 , C7,9 , C7,10 , C8,9 , C9,10 , C10,10 ) 

= (2.6, 5.3, -4.49, 5.48, -8.45, 4.55, -3.04, -2.45, 1.19, 2.45, -3.28, 1.92, 6.03, 1.71, 1.58, 1.63, 1.65, -8.27, 1.3, -3.55, -1.22, 

3.08, 2.35, -6.13, 4.54, 7.81, 2.06, -1.01, 6.72, -5.19, -8.06, -2.27, 6.52, -4.44, 2.09, 2.47, -9.78, -1.81, -1.08, -1.13, 8.22, -

5.67, -7.80, -2.02, -9.43, -2.14, -1.76, 4.18, 9.13, -3.61, -2.47, 1.01, -3.9, 1.13, 5.31) 

 

The values of the vector C are obtained from the outputs of the polynomial regression model. The polynomial function 

is expressed in the provided form, as depicted in equation 1 below: 

 

P(X) = CTY (1) 

 

In order to simplify the expression of the equation, we chose to write it in the matrix format, and we added the constraint 

system. We define X as follows:  

 

X = (1 X1  X2  X3  X4  X5  X6  X7  X8  X9 ) 
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Matrix A, on the other hand, is a coefficient matrix used in the polynomial regression equation to predict the theoretical 

delay. In polynomial regression, matrix A typically represents the coefficients that are multiplied by the input variables (X1 

to X9 in this case) to estimate the output variable (theoretical delay). Each element in matrix A corresponds to a specific 

combination of input variables and their impact on the predicted variable in the described way: 

 

A = 

(

 
 
 
 
 
 
 

2.6 −3.28 1.92 6.03 1.71 1.58 1.63 1.65 −8.27 1.3
0 5.3 −3.55 −1.22 3.08 2.35 −6.13 4.54 7.81 2.06
0 0 −4.49 −1.01 6.72 −5.19 −8.06 −2.27 6.52 −4.44
0 0 0 5.48 2.09 2.47 −9.78 −1.81 −1.08 −1.13
0 0 0 0 −8.45 8.22 −5.67 −7.80 −2.02 −9.43
0 0 0 0 0 −4.55 −2.14 −1.76 4.18 9.13
0 0 0 0 0 0 −3.04 −3.61 −2.47 1.01
0 0 0 0 0 0 0 −2.45 −3.9 1.13
0 0 0 0 0 0 0 0 1.19 5.31
0 0 0 0 0 0 0 0 0 2.45 )

 
 
 
 
 
 
 

 

 

Table 8. Endogenous variables’ signification 

 

Endogenous variable Meaning 

X1 Number of resources (Truck) 

X2 The size of the first batch (Batch Size 1) 

X3 The size of the second batch (Batch Size 2) 

X4 Number of resources (Operator Preparation) 

X5 Number of resources (Operator Station 1) 

X6 Number of resources (Operator Station 2) 

X7 Number of resources (Operator Station 3) 

X8 Number of resources (Forklift) 

X9 Time to prepare an order (Preparation Time) 

 

Table 9. Exogenous variables’ signification 

 

Exogenous variable Meaning 

O1 The Forklift's occupation rate in the first transfer 

O2 The Forklift's occupation rate in the second transfer  

B1 The limit of the company's budget for the Forklift 

B2 The limit of the company's budget for truck  

Lop The boundary of the existed resources (Operator Preparation) 

Los1 The boundary of the existed resources (Operator Station 1) 

Los2 The boundary of the existed resources (Operator Station 2) 

Los3 The boundary of the existed resources (Operator Station 3) 

 

Tables 8 and 9 provide a breakdown of the variables and their meanings in the context of the supply chain optimization 

model. These variables are divided into two categories: endogenous and exogenous. Endogenous variables represent 

parameters that are determined within the system or model itself, and their values depend on decisions or processes within 

the supply chain. For example, “Number of resources (Truck)” represents the number of trucks used in the supply chain, 

while “Number of resources (Operator Preparation)” signifies the count of operators involved in the preparation phase. On 

the other hand, exogenous variables are external factors that influence the system but are not determined within the model. 

These can include budget constraints like "The limit of the company's budget for the forklift (B1)" or resource limits such as 

“The boundary of the existing resources (Operator Station 1) (Los1).” These variables collectively define the environment 

and constraints in which the supply chain operates. We have not specified specific values for these constraints, as they can 

vary depending on the specific needs and conditions of the company, including, for example, the financial constraints. We 

present the results in the form of equation (2) along with its associated constraint system as follows: 
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Theoretical delay = XTAX (2) 

where  

X2 ≤ O1 ,  

X3 ≤ O2 , 
X8 ≤ B1 , 
X1 ≤ B2 , 
X4 ≤ Lop , 

X5 ≤ Los1 , 
X6 ≤ Los2 , 
X7 ≤ Los3 .  

 

6. CONCLUSION:  
 

This research paper addresses the complexities of on-stock supply chains, highlighting the challenge of the decoupling 

between manufacturing, procurement and expedition processes, with special attention to delivery delays. The primary 

objective is to bridge the gap between discrete-events simulation (DES) and machine learning (ML) and create a mathematical 

model that formalizes the relationship between action and evaluation parameters in on-stock supply chains. This model aims 

to optimize logistical performance by reducing delivery delays and enhancing overall efficiency. The paper employs a 

structured approach, combining theoretical insights with practical testing through an academic case study that demonstrates 

the model's applicability. The ultimate goal is to improve the on-stock supply chain performance in an ever-changing global 

landscape. To achieve this, we involved the use of an academic case study as empirical validation of our approach. Here, we 

applied regression algorithms to mathematically formalize the relationship between the identified variables and delivery 

delays. By applying data-driven modeling techniques, we aimed to bridge the gap between theory and practical application, 

offering actionable insights for supply chain optimization. In future research, there is potential to expand upon this study by 

integrating the developed algorithms into an optimization framework aimed at minimizing the theoretical delay. This 

optimization approach would take into account the financial constraints specified by the company and incorporate the 

equation derived from the regression algorithms. This effort should include a thorough investigation into the interplay 

between the variables involved. It's important to note that within the equation, there may be various terms that can be pruned, 

and determining a purification factor becomes essential to guide decisions about which terms to retain or eliminate. 

Additionally, it would be advantageous to explore and compare various other algorithms to increase the chances of identifying 

the most effective technique for modeling and addressing delivery delays. On the other hand, real-world scenarios may be 

explored as they can consider the non-technical aspects of our method concerning the challenges that may arise in project 

management. 
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