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Being able to efficiently reassign outbound flights to baggage unloading carousels (BUCs) following temporary malfunctions 

is very important for airport operators. This study proposes an optimization model with a heuristic to solve the carousel 

reassignment problem. The objective is to minimize the total disturbance and overlapping time caused by the reassignment 

of outbound flights. A heuristic is developed to efficiently solve large-sized instances. The proposed approach is then applied 

to solve real-world instances of the problem at a major international airport in Taiwan. The computation time is about two 

minutes. The objective value obtained with the heuristic is more than 15% better than that obtained by the manual approach 

currently used by the operator. The improvement is gained mostly from the reduction in total temporal disturbance and 

overlapping time. The proposed approach could assist the operator in reassigning outbound flights to BUCs in response to 

malfunctions. 
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1. INTRODUCTION 
 

Baggage handling systems (BHSs) are an essential component of airport infrastructure. They are comprised of a series of 

zones (such as piers, chutes, carousels, and conveyor belts) for handling baggage. Airport baggage can be categorized into 

three types: inbound, transfer, and outbound. Timely handling of outbound and transfer baggage is critical for airport 

operations as both directly impact departing flights and passenger boarding. This study focuses on the baggage unloading 

system (BUS) responsible for outbound and transfer baggage for departing flights. The BUS assigns each piece of outbound 

or transfer baggage to an unloading zone (or carousel) after it passes through security screening and the main sorter. 

The airport operator assigns baggage unloading carousels (BUCs) to scheduled departing flights. Unexpected 

disruptions, such as loss of power or mechanical failure, can cause BUS malfunctions that render the predetermined BUC 

assignment inapplicable. Disturbances resulting from BUS malfunctions can significantly delay scheduled flight departures 

and cause annoyance and inconvenience to boarding passengers. For instance, on December 8th, 2019, over 20 departing 

flights were delayed due to a BUS malfunction at Israel's Ben Gurion Airport. Another BUS malfunction occurred on March 

8th, 2019, at Taiwan's Taoyuan International Airport, causing significant delays to over 40 departing flights and affecting 

more than 10,000 passengers. Considering that BUS malfunctions have such a significant impact on airport performance, 

solutions for mitigating their impact are extremely valuable to airport operators. 

Airport operators generally reassign flights affected by BUC malfunctions to other available carousels and/or postpone 

the unloading of baggage from some flights. However, the reassignment of affected flights to available carousels inevitably 

causes disturbances to the original carousel assignments and inconvenience to baggage handlers, as well as passengers. 

Therefore, from the perspective of airport operators, it is desirable to minimize disturbances due to carousel reassignment in 

order to reduce the impact of BUC malfunctions on airport operations. However, the manual approach typically adopted by 

airport operators in practice may not be able to effectively reassign carousels immediately after BUC malfunctions. For 
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instance, the operator of the airport modeled in this study reassigns affected flights to available carousels with remaining 

capacity based on prior experience, giving priority to large-sized flights. If there is no available carousel with remaining 

capacity to reassign a flight (flight A), then flight A is delayed until a carousel with remaining capacity becomes available. If 

the delay is too long (i.e., more than two hours), then flight A will be reassigned to a carousel that was originally assigned to 

a later flight (flight B). In turn, flight B will have to be reassigned, and the process is repeated until all affected flights are 

reassigned. As can be seen, the manual approach is a local adjustment approach and is neither efficient nor effective. 

To the best of our knowledge, the BUC reassignment problem in response to BUS malfunctions has never been 

considered, although the planning problem for BUC assignment and its variants have been addressed in some previous studies. 

The aforementioned practical need and this gap in the literature have motivated us to address the problem of reassigning 

departure flights to baggage unloading carousels in response to temporary BUS malfunctions.  

An innovative optimization model with a solution algorithm is developed to solve the carousel reassignment problem 

from the perspective of the airport operator, which minimizes disturbances due to the reassignment while satisfying a set of 

operational constraints. The carousel reassignment problem under consideration can be viewed as a resource (carousel)-

constrained assignment problem, which is characterized as NP-hard (Garey and Johnson, 1979). To efficiently solve large-

sized instances of the proposed model, this study develops a heuristic based on the genetic algorithm (GA). The GA is an 

adaptive heuristic search method inspired by population genetics (Goldberg, 1989; Holland, 1975), which has been widely 

adopted to solve combinatorial optimization problems (e.g., Garcia-Najera et al., 2011; Gen and Cheng, 2000; Lu and Yu, 

2012; Yu et al., 2019). The differences between the proposed heuristic and typical GAs are discussed below. Typical GAs 

adopt a mutation operator to avoid being trapped in local optima. However, it should be noted that determining a suitable 

mutation rate is critical to this mechanism. If the mutation rate is too high, better chromosomes cannot be retained from 

generation to generation, rendering the search process highly random. On the other hand, if the mutation rate is too low, the 

search process cannot jump out of a local optimum. To avoid the problem of determining a suitable mutation rate, this study 

employs a 2-Swap local search operator to replace the mutation operator used in typical GAs. Incorporating the 2-Swap local 

search operator can be viewed as adding a depth-search mechanism to the GAs, which already feature breadth-search in the 

crossover operation to increase the probability of finding high-quality solutions. Moreover, the scheme for coding the genes 

in a chromosome is simple and clear, facilitating the crossover and 2-Swap operations in the heuristic. The proposed model 

and the heuristic are evaluated using problem instances generated from real data from a major international airport in Taiwan. 

The performance of the proposed heuristic is compared with that of the manual approach currently used by the airport 

operator. Sensitivity and scenario analyses are also conducted to examine the influence of the parameters on the solution of 

the model. 

From a theoretical perspective, this study represents an initial but significant effort to address the problem of carousel 

reassignment in response to BUS malfunctions. We have developed an optimization model and a heuristic to solve this 

problem and demonstrated the performance of our approach using real-world problem instances. In practical terms, our 

proposed approach provides a systematic solution that outperforms the manual approach currently used by airport operators 

to reassign outbound flights to available carousels in response to temporary malfunctions. 

The remainder of this paper is organized as follows: Section 2 provides a literature review, Section 3 presents the 

problem description and assumptions, Section 4 describes the mathematical model for optimal carousel reassignment, and 

Section 5 presents the solution algorithm. In Section 6, we report the computational results, and we conclude the paper with 

some final remarks in Section 7. 

 

2. LITERATURE REVIEW 

 

Many decisions in airport management involve the assignment of limited infrastructure resources to many competing 

activities with a given schedule, such as the assignment of flights to gates, runways or maintenance facilities (e.g., 

Abdulmalek and Savsar, 2022; Chen and Schonfeld, 2022; Kim et al., 2017; Lieder and Stolletz, 2016; Sena Daş et al. 2020; 

Tang and Wang, 2013; Yan and Huo, 2001; Yan et al., 2011). The outbound BUC assignment problem is a specific problem 

within this broad research area. Abdelghany et al. (2006) adopted an activity selection heuristic to solve the problem of 

assigning departing flights to outbound baggage-handling facilities (called piers) to optimize the use of available piers while 

satisfying operational requirements. Ascó et al. (2012, 2014) used evolutionary and construction heuristics to solve the 

outbound baggage sorting station assignment problem. Huang et al. (2016) presented a stochastic vector assignment model 

for assigning outgoing flights with scheduled departure times to baggage unloading zones (chutes) under uncertainty to 

minimize the total expected assignment cost in the system. Frey et al. (2017) developed a time-indexed mathematical 

programming formulation for planning the outbound baggage carousel assignment. They proposed a decomposition 

procedure in combination with a column generation scheme to solve practical problem instances. Huang et al. (2018) 

considered uncertain flight departure times due to flight mechanical problems or weather changes and proposed a scenario-

based robust optimization model to find a robust plan for assigning flights to baggage unloading areas to minimize the 
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expected number of unassigned flights and the number of changes between planned and actual assignments. More recently, 

Barth and Pisinger (2021) presented a mixed integer model for assigning baggage carousels to a set of arriving flights with 

the aim of achieving a balance between customer satisfaction and operational needs. 

 

3. PROBLEM DESCRIPTION AND ASSUMPTIONS 

 

An example is used to illustrate the carousel reassignment problem under consideration, as shown in Figure 1. There are eight 

departure flights (two of them are large-sized flights) that are serviced by three BUCs. The original carousel assignments are 

shown by the arrows connecting the flights to their assigned carousels. For instance, flight #1, which is not a large-sized 

flight, is assigned to carousel #1 from 1:30 to 3:00; flight #3, which is a large-sized flight, is assigned to carousel #2 from 

4:00 to 5:30. However, it is assumed that carousel #1 is out of order from 3:00 to 3:30 (i.e., the malfunction event lasts for 

30 minutes). As a result, flights #2 to #8 are affected in this case. The aim of the carousel reassignment problem is to optimally 

reassign the affected outbound flights to BUCs within the planning horizon so that the total disturbance due to the 

reassignment is minimized. Each flight is assigned to a BUC within the associated time window. The time window represents 

the time allotted for baggage unloading, which depends on the amount of baggage designated to go on that flight. Any flight 

can be assigned to any of the available carousels. Note that this small example was solved using both CPLEX and the proposed 

heuristic method, and the results are presented in Section 6.2. 

 

 
 

Figure 1. Illustrative Example of the Carousel Reassignment Problem 

 

The main difference between this problem and the existing planning problem for the BUC assignment lies in the 

objective function. The focus in such planning problems is often on either minimizing the total assignment cost (e.g., Huang 

et al., 2016) or maximizing carousel utilization (e.g., Abdelghany et al., 2006). However, the aim of the carousel reassignment 

problem is to minimize the total disturbance due to the reassignment. Specifically, the objective function consists of two 

components: (i) the spatial and temporal disturbances resulting from the carousel reassignment and (ii) the time overlap for 

flights simultaneously using the same carousels. Reassigning flights to other available carousels typically generates spatial 

disturbances, while postponing the baggage unloading of some flights often results in temporal disturbances. Both spatial and 

temporal disturbances adversely affect airport operations, airlines, and passengers. Moreover, the reassignment of affected 

flights to carousels that are already being used by other flights causes an overlap in time for the flights simultaneously using 

the same carousels, which increases the workload of baggage handlers. The intention of the airport operator is to minimize 

the aforementioned disturbances and the overlapping time when reassigning flights to different carousels. Minimizing these 

performance measures also implies that the solution to the carousel reassignment problem does not deviate much from the 

original assignment. 
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The following assumptions are made to facilitate the modeling of the problem without loss of generality:  

(a) The starting and ending times of the carousel malfunction scenario are known. The number of available carousels and 

their layout in the airport are given in the carousel malfunction scenario. This study does not consider the case in which 

all BUCs are out of order or flight cancellations. 

(b) There is a buffer time (typically less than 30 minutes) for the airport operator to evaluate the impact of the BUS 

malfunction and to reassign the flights to the available carousels. Therefore, the starting time of the planning horizon is 

set to be 30 minutes after the starting time of the malfunction. The ending time of the planning horizon is determined 

by the severity and duration of the carousel malfunction. The (directly or indirectly) affected flights are those which 

were assigned to the carousels within the planning horizon. 

(c) The planning horizon is discretized into a number of equal and sequentially numbered time intervals. The departure 

times of all the affected flights that are to be reassigned are assumed to be the integer indices for the respective time 

intervals. The flight number and the number of passengers for each affected flight are also known. The assumption is 

that each passenger checks in at least one piece of baggage, and according to the airport operator, a flight with more 

than 300 passengers is considered to be a large-sized flight. 

(d) The original carousel assignment plan before the malfunction is given. The baggage unloading time for each flight is 

not affected by the malfunction.  

(e) The spatial disturbance for a flight due to the reassignment is proportional to the distance (or conveyance time) between 

the original carousel and the reassigned carousel for that flight. Moreover, for the same distance, the spatial disturbance 

for a large-sized flight is larger than that for a small-sized flight because it is less preferred to reassign large-sized flights 

to far-away carousels.  

(f) The temporal disturbance reflects the impact of postponing the assignment of a flight to a carousel at a later time interval. 

The temporal disturbance is computed as the number of delayed time intervals multiplied by a magnification factor (or 

weight). Although different weights might be applied to different flights, the airport under consideration assumes the 

same weights for the flights. To avoid significantly affecting connecting or downstream flights operated by the same 

aircraft, there is an upper bound on the maximum time (i.e., longest possible delay) for delaying the baggage unloading 

of an impacted flight. This largest possible delay (e.g., two hours) is determined by the airport operator. 

 

4. MATHEMATICAL MODEL 

 

Sets and indices: 

𝐼 the set of affected flights, indexed by i and r  
𝑇 the set of time intervals, indexed by s and t  

𝐽𝑡/𝐽𝑠 the set of available carousels at time interval t or s, indexed by j  

𝐼𝐹 the set of large-sized flights 

 

Parameters: 

𝛼𝑖𝑗 the spatial disturbance for reassigning flight i from its original carousel to carousel j (unit: min) 
𝛽𝑖𝑡 the temporal disturbance for reassigning flight i from its original time interval to time interval t (unit: min) 

𝑤𝑖  the earliest time interval to start unloading baggage to flight i    

𝑙𝑖 the latest time interval to start unloading baggage to flight i  

𝑑𝑖 the baggage processing (unloading) time for flight i (number of time intervals used to process the baggage of flight i) 

𝑞𝑖𝑟  the (weighted) overlapping time for flights i and r using the same carousel in a time interval. 

ℎ 
the maximum number of flights that can be simultaneously assigned to a carousel in a time interval (i.e., carousel 

capacity) 

 

Variables: 

𝑥𝑖𝑗𝑡  
=1 if flight i is reassigned to carousel j starting at time interval t (i.e., baggage unloading of flight i on carousel j starts 

at time interval t); otherwise, 𝑥𝑖𝑗𝑡 = 0 

𝑦𝑖𝑟𝑠 the overlapping time for flights i and r using the same carousel in time interval s  

 

  



Yan et al. Optimal Reassignment of Flights to Airport Baggage Unloading Carousels 

 

391 

The following sets are defined for presenting the model: 

 

𝑇𝑖  the set of possible time intervals for starting the baggage unloading for flight i  

𝑀𝑠 
the set of pairs (i, t) for time interval s, where t is a possible starting time interval for unloading baggage for flight i; 

𝑀𝑠 = {(𝑖, 𝑡)|𝑤𝑖 ≤ 𝑡 ≤ 𝑙𝑖 , 𝑠 − 𝑑𝑖 ≤ 𝑡 ≤ 𝑠, 𝑖 ∈ 𝐼} 

𝑇𝑖𝑠 
the set of time intervals for starting the baggage unloading for flight i before time interval s; that is 𝑇𝑖𝑠 =
{𝑡|𝑤𝑖 ≤ 𝑡 ≤ 𝑙𝑖 , 𝑠 − 𝑑𝑖 ≤ 𝑡 ≤ 𝑠}  

𝐹𝑠 the subset of Ms for large-sized flights; 𝐹𝑠 = {(𝑖, 𝑡)|𝑤𝑖 ≤ 𝑡 ≤ 𝑙𝑖 , 𝑠 − 𝑑𝑖 ≤ 𝑡 ≤ 𝑠, 𝑖 ∈ 𝐼𝐹} 

𝑂𝑠 
the set of flight pairs (i, r) with overlapping time for unloading baggage at time interval s; 𝑂𝑠 =
{(𝑖, 𝑟)|𝑤𝑖 ≤ 𝑠 ≤ 𝑙𝑖 + 𝑑𝑖 , 𝑤𝑟 ≤ 𝑠 ≤ 𝑙𝑟 + 𝑑𝑟} 

 

The optimization model is formulated as follows:  

 

𝑀𝑖𝑛 = ∑ ∑ 𝑦𝑖𝑟𝑠(𝑖,𝑟)∈𝑂𝑠𝑠∈𝑇 + ∑ ∑ ∑ (𝛼𝑖𝑗 + 𝛽𝑖𝑡) ∙ 𝑥𝑖𝑗𝑡𝑗∈𝐽𝑡𝑡∈𝑇𝑖𝑖∈𝐼    (1) 

Subject to    
∑ ∑ 𝑥𝑖𝑗𝑡𝑗∈𝐽𝑡𝑤𝑖≤𝑡≤𝑙𝑖

= 1  ∀𝑖 ∈ 𝐼  (2) 

∑ 𝑥𝑖𝑗𝑡 ≤ ℎ(𝑖,𝑡)∈𝑀𝑠
  ∀𝑗 ∈ 𝐽𝑠 , 𝑠 ∈ 𝑇  (3) 

∑ 𝑥𝑖𝑗𝑡 ≤ 1(𝑖,𝑡)∈𝐹𝑠
  ∀𝑗 ∈ 𝐽𝑠 , 𝑠 ∈ 𝑇  (4) 

𝑞𝑖𝑟 ∙ (∑ 𝑥𝑖𝑗𝑡𝑡∈𝑇𝑖𝑠
+ ∑ 𝑥𝑟𝑗𝑡𝑡∈𝑇𝑟𝑠

− 1) − 𝑦𝑖𝑟𝑠 ≤ 0  ∀𝑗 ∈ 𝐽𝑠, (𝑖, 𝑟) ∈ 𝑂𝑠, 𝑠 ∈ 𝑇  (5) 

𝑥𝑖𝑗𝑡 = 0 𝑜𝑟 1  ∀𝑗 ∈ 𝐽𝑡 , 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼  (6) 

𝑦𝑖𝑟𝑠 ≥ 0  ∀(𝑖, 𝑟) ∈ 𝑂𝑠, 𝑠 ∈ 𝑇  (7) 

 

The objective function (Eq. (1)) is to minimize the sum of (i) the overlapping time of the flights simultaneously using 

the same carousels and (ii) the spatial and temporal disturbances resulting from reassigning the flights to the available 

carousels. Eq. (2) ensures that each affected flight is reassigned to one carousel. The constraints in Eq. (3) are the capacity 

constraints for the available carousels: the number of flights assigned to a carousel within a time interval cannot exceed the 

preset threshold, h. Eq. (4) prescribes that at most one large-sized flight can be assigned to a carousel in a time interval. Eq. 

(5) computes the overlapping time between each pair of flights (i, r) for each time interval s. In Eq. (5), 𝑞𝑖𝑟  denotes the 

(weighted) overlapping time for flights i and r using the same carousel in a time interval, and the phrase in parentheses 

(∑ 𝑥𝑖𝑗𝑡𝑡∈𝑇𝑖𝑠
+ ∑ 𝑥𝑟𝑗𝑡𝑡∈𝑇𝑟𝑠

− 1) computes the number of time intervals in which two flights i and r use the same carousel 

simultaneously. The product of these two values determines the overlapping time (𝑦𝑖𝑟𝑠) between a pair of flights i and r. The 

objective is to minimize the total overlapping time obtained by these constraints. Note that the overlapping time (𝑞𝑖𝑟) between 

a large-sized flight and a small-size flight for a time interval is a multiple of that between two small-size flights. In the 

numerical example, the multiple is equal to 2, as suggested by the airport operator. Eq. (6) indicates that decision variable 

𝑥𝑖𝑗𝑡  is binary, while Eq. (7) states that variable 𝑦𝑖𝑟𝑠 is non-negative.  

 

5. SOLUTION ALGORITHM 

 

5.1 Overview 

 

The proposed model is formulated as a mixed integer program with binary integer variables ( 𝑥𝑖𝑗𝑡 ) and without very 

complicated constraints, so the GA is naturally useful for coding and searching for effective solutions. A GA-based heuristic 

is developed to efficiently solve large-scale problem instances that are too large for the commercially available CPLEX 

software to solve in one day. The proposed heuristic adopts a 2-Swap operator to enhance the depth search instead of using 

the mutation operator in conventional GAs. The heuristic is called GA+2-Swap, hereafter in the paper.  

In the heuristic, each gene in a chromosome is coded using a 4-digit integer and represents the assignment of a flight to 

a carousel in a time interval. The number of genes in a chromosome is equal to the number of (affected) flights that need to 

be reassigned to the available carousels. An illustrative example of a chromosome is shown in Figure 2. There are five genes 

in this chromosome, each of which corresponds to a flight. For instance, the first gene corresponds to flight A. The code of 

the first gene (i.e., 1522) indicates that this flight is assigned to carousel 15 at time interval 22. The code of the second gene 

(i.e., 0217) states that flight B starts unloading luggage at carousel 02 at time interval 17. 
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Gene # 1 2 3 4 5 

Code 1522 0217 1004 1126 0713 

Corresponding flight A B C D E 

 

Figure 2. Illustrative Example of the Coding for a Chromosome 

 

A flowchart of the proposed heuristic is depicted in Figure 3. The algorithm starts by generating an initial population of 

feasible chromosomes. The population size for each generation is K. Fitness is defined as the inverse of the objective value 

because the model aims to minimize the objective function (Eq. (1)). The population evolves by creating new generations of 

offspring through an iterative process until a maximum number of generations is reached. The creation of a new generation 

of individuals involves three major operators: selection, crossover (recombination), and 2-Swap. The elitism strategy, which 

passes on the better chromosomes in a generation to the next one, is also applied to evolving the population. The heuristic is 

described in detail in the following subsections. The decoding of the final chromosome to arrive at a solution is 

straightforward. For each flight, the code of the corresponding gene is retrieved and divided into two parts. The first part 

denotes the carousel, and the second part is the time interval for the baggage of that flight to be unloaded. 

 

 
 

Figure 3. Flowchart of the Proposed Heuristic 

 

5.2 Selection 

 

This study integrates the Tournament method with the Roulette Wheel method for the selection of better chromosomes (e.g., 

Lu and Yu, 2012). This method involves running several tournaments between two chromosomes chosen at random from the 

population. The winner of each tournament (i.e., the one with a larger fitness value) is selected for reproduction. In the 

Roulette Wheel method, the number of replications (𝑒𝑐 ) of the winner chromosome c that enters the mating pool is 

proportional to its fitness value and is calculated using the following formula: 

Start
Generate initial 

population

n=1

(n:# of iterations)

Calculate fitness

Selection

Crossover

2-Swap

Elitism 

strategy 

Next generationUpdate solution

n=N (max # 

iterations)?

Stop

Yes

No

n=n+1



Yan et al. Optimal Reassignment of Flights to Airport Baggage Unloading Carousels 

 

393 

𝑒𝑐 = 𝐶 ×
𝑓𝑚𝑎𝑥−𝑓𝑐

∑ 𝑓𝑘
𝐾
𝑘=1

, (8) 

 

where C is the number of chromosomes in the population, 𝑓𝑐 is the fitness value of chromosome c, and 𝑓𝑚𝑎𝑥 is the largest 

fitness value in the population. The tournament is repeated until the mating pool is filled, i.e., the population size K is reached).  

 

5.3 Crossover 

 

The commonly used two-point crossover method is adopted in this study (e.g., Gen and Cheng, 2000; Lu and Yu, 2012). This 

crossover operator begins with the random selection of two distinct chromosomes from the mating pool. Two crossover points 

are then randomly selected for each of the two chromosomes. The substrings defined by the crossover points are exchanged 

to produce proto-children. An illustration of the two-point crossover operator is presented in Figure 4. Two chromosomes, 

A1 and B1, are randomly selected from the mating pool. The two crossover points are (0217 and 0713) and (0716 and 0809) 

in A1 and B1, respectively. The two substrings defined by the crossover points are then exchanged to produce offspring A2 

and B2. Infeasible offspring (i.e., those that violate constraints (3) and/or (4)) must be repaired before they enter the next 

generation. The process is repeated until the preset size for the next generation is reached.  

 

A1 1522 0217 1004 1126 0713  A2 1522 0716 0520 1430 0809 

 

B1 2210 0716 0520 1430 0809  B2 2210 0217 1004 1126 0713 

 

Figure 4. Illustration of the Two-Point Crossover Operator 

 

5.4 2-Swap local search 

 

The proposed heuristic adopts a 2-Swap local search after the crossover operator instead of a mutation operator typically used 

in GAs. The 2-Swap local search diversifies the search direction and improves solution quality. For each chromosome in the 

current population, two genes are randomly selected, and their positions are exchanged to produce a child chromosome. 

Figure 5 illustrates an example of the 2-Swap local search. The two genes, 0217 and 1126, are randomly selected from the 

parent chromosome C1. These two are then swapped to obtain the child chromosome C2. Infeasible child chromosomes are 

repaired to satisfy constraints (3) and (4). If the fitness value of the child chromosome is better than the parent chromosome, 

then the child replaces the parent in the next generation; otherwise, the parent is retained. The process is applied to all of the 

chromosomes in the population. 

 

C1 1522 0217 1004 1126 0713  C2 1522 1126 1004 0217 0713 

 

Figure 5. Illustration of the 2-Swap Local Search 

 

5.5 Repair of infeasible chromosomes 

 

Infeasible chromosomes resulting from the application of the crossover operator or the 2-Swap local search operator must be 

repaired, and only feasible offspring are allowed to enter the next generation population. Essentially, the repair ensures that 

(i) no flights are assigned to dysfunctional carousels, and (ii) the capacity constraint (Eq. (3)) and the large-sized flight 

constraint (Eq. (4)) for the available carousels are satisfied for a chromosome. 

The repair procedure is depicted in Figure 6. After inputting the data, the procedure first checks whether or not all the 

carousel-time interval combinations satisfy the capacity constraint (Eq. (3)). If there are some carousels in some time intervals 

that violate this capacity constraint, the procedure will try to fix the violations by relocating extra flights one-by-one to other 

carousels with sufficient capacity in the same time intervals. If there is no available carousel to relocate a flight in the same 

time interval, then the start of the unloading time interval of that flight has to be delayed until a carousel with enough capacity 

is found, resulting in a temporal disturbance. Note that a change in the gene corresponding to that flight may be involved due 

to the delay of its unloading start time. If the unloading start time of more than one flight has to be postponed, the flight with 

the smallest temporal disturbance is selected to be delayed. This process is repeated until the capacity constraint is satisfied 

for all carousels and time intervals. If all the capacity violations can be fixed, then the procedure moves forward to check the 

violations for the large-sized flight constraint (Eq. (4)); otherwise, this chromosome will be abandoned, and the procedure 
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will be stopped (i.e., there is at least one carousel-time interval combination that violates the capacity constraint and cannot 

be fixed). If there are some carousels in some time intervals that violate the large-sized flight constraint in Eq. (4), the repair 

procedure will try to fix the violations by relocating the extra large-sized flights to other carousels with sufficient capacity 

and delaying the unloading start time of extra large-sized flights. The process is similar to that for repairing the violation of 

the capacity constraint and is therefore not described again. 

The flight relocation and postponement operations required for the aforementioned repair procedure can be efficiently 

operated in a one-dimensional data structure. Moreover, very few infeasible chromosomes are encountered in the heuristic. 

Thus, the repair procedure does not affect the computational efficiency of the heuristic. It should also be noted that in the 

crossover step, very few infeasible chromosomes that cannot be repaired are abandoned, and another pair of chromosomes is 

randomly selected for the next iteration of the crossover. In the 2-Swap local search step, the original feasible chromosome 

can be retained if an infeasible chromosome cannot be repaired. Therefore, there is always a feasible chromosome obtained 

in this step. 

 

 
 

Figure 6. Repair of Infeasible Chromosomes 

 

6. NUMERICAL EXPERIMENTS AND RESULTS 

 

This study conducted numerical experiments to evaluate the proposed model and solution algorithm's performance in 

practical applications. Test instances were generated using real data from Taoyuan International Airport, the largest 

international airport in Taiwan. Specifically, we addressed the carousel reassignment problem for outbound flights in 

Terminal 2, which primarily serves long-distance flights to Europe and America that typically involve larger amounts of 

baggage. On average, the number of outbound flights per day is around 160, nearly equal to the number of daily inbound 

flights. For detailed test data and results, interested readers may contact the authors. We implemented the GA+2-Swap 

algorithm using the C++ programming language, and all numerical experiments were conducted on a personal computer with 

an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz and 8.00 GB of RAM. 

 

6.1 Input data 

 

The planning horizon begins 30 minutes after the initial occurrence of the carousel malfunction scenario and extends until 

the end of the day. The input data required for the model comprises the layout of the baggage unloading carousels, information 

related to the departing flights, the original plan for carousel assignment, and the details of the carousel malfunction scenario. 
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(1) The layout of baggage unloading carousels is shown in Figure 7. There are 23 carousels located in three areas: six 

carousels in the north sector (number 1 to 6), six carousels in the south sector (number 7 to 12), and eleven carousels in 

the north waiting hall (number 13 to 23).  

 

 
 

Figure 7. Layout of Baggage Unloading Carousels 

 

(2) The data for the departure flights include the flight ID, departure time, destination, number of boarding passengers, and 

check-in counter for each departure flight. There is a total of 160 flights, of which 24 are large-sized flights. 

(3) The original carousel assignment before the malfunction is provided by the operator. The data include the flight number, 

assigned BUC, and the starting and ending times for using the assigned carousel for each flight. The baggage unloading 

time for a flight is assumed to be 90 minutes.  

(4) This study considers a malfunction scenario in which the six carousels (number 1 to 6) in the north sector break down 

due to a power failure. This type of carousel malfunction scenario happens occasionally in periods of high power 

consumption, such as on summer afternoons when demand for electricity may exceed supply. The malfunction lasts 

from 11:00 to 14:00, during which the six carousels in the north sector are unusable, while the other 17 carousels function 

normally. To allow for buffer time to generate a reassignment plan, the reassignment period starts at 11:30, with each 

time interval lasting for 30 minutes. 

In addition to the above input data, the model and algorithmic parameters are set as follows: 

(1) The maximum number of flights that can be simultaneously assigned to a carousel in a time interval (h) is three.  

(2) The spatial disturbance for reassigning flight i from its original carousel to carousel j (unit: min), denoted as 𝛼𝑖𝑗, is 

proportional to the conveyance time between the original carousel and carousel j. The spatial disturbances between the 

three areas of the BUS are presented in Table 1. In each cell, the numbers on the left and the right of the slash represent 

the disturbances for small-size and large-sized flights, respectively. For instance, if the original carousel and the 

reassigned carousel are in the same zone, the disturbance is 30 minutes for a large-sized flight and 10 minutes for a 

small-size flight. If one carousel is in the north sector, but the other is in the south sector, the disturbance is 20 minutes 

for a large-sized flight and 40 min for a small-size flight. 

 

Table 1. Spatial Disturbances in the Three Areas (min) 

 

 North sector South sector North waiting hall 

North sector 10 / 30 20 / 40 60 / 80 

South sector 20 / 40 10 / 30 80 / 100 

North waiting hall 60 / 80 80 / 100 10 / 30 

Check-in counters
Carousels in north 

departure hall

Carousels in 

north sector

Carousels in 

south sector
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(3) The temporal disturbance for reassigning flight i from its original time interval to time interval t (unit: min), denoted as 

𝛽𝑖𝑡, reflects the impact of postponing the assignment of flight i to a carousel at a later time interval t. As recommended 

by the airport operator, this study sets the maximum allowable delay for serving a flight to be two hours. There are four 

intervals (the length of a time interval is 30 minutes) for each flight reassignment. The disturbance 𝛽𝑖𝑡 is computed as 

the number of delayed time intervals multiplied by a magnification factor. For instance, if flight i is to be served at time 

interval t+2, then 𝛽𝑖𝑡 will be 100 (2 × 50), where the magnification factor is equal to 50. The value of this factor is larger 

than the spatial disturbance (i.e., 30) incurred when reassigning flights to different carousels. This is because postponing 

flights to carousels has a greater impact than reassigning flights to different carousels. Sensitivity analysis showed that 

the magnitude of this factor does not significantly affect the solution.  

(4) The values of the major parameters of the GA algorithm (population size and crossover rate) were determined by a set 

of preliminary experiments. Specifically, the following values of the two parameters were examined. 

Population size (K): 100, 120, 150, 180; 

Crossover rate: 0.5, 0.8, 1.0. 

According to the results of preliminary experiments, it has been determined that a population size (K) of 150 for each 

generation and a crossover rate of 0.5 yield the best objective value. Furthermore, it was observed that the objective value 

remains relatively stable after 300 generations. Therefore, the maximum number of generations has been set to 300 to achieve 

a balance between solution effectiveness and efficiency. 

The optimization model presented in Section 3 was set up using the input data mentioned above. The model involves a 

large number of variables (185,223) and constraints (14,248,409). One of the main challenges in solving this problem is the 

large number of constraints required to calculate the overlapping time between each pair of flights (i, r) for each time interval 

s (as shown in Eq. (5)). The large numbers of variables and constraints in the model impede the use of off-the-shelf 

optimization software, such as CPLEX, to obtain an exact solution. Generating a smaller instance that can be solved by 

CPLEX for a preliminary evaluation of the performance of the heuristic is an acceptable compromise. As mentioned earlier, 

the main objective of this study is to formulate a model for solving the BUC reassignment problem. The proposed heuristic 

represents an initial effort to solve the problem; further elaboration and examination of the solution approach are worthy of 

investigation in subsequent studies. 

 

6.2 Evaluation of the algorithm performance using a small-scale instance 

 

A small-scale instance was generated based on the data described in Section 6.1 to preliminarily evaluate the performance of 

the GA+2-Swap. We solved this small instance using GA+2-Swap and compared the solution obtained by solving the 

optimization model using CPLEX. The instance includes eight departing flights, two of which are large-sized flights, with an 

original carousel assignment shown in Table 2. The baggage unloading system has one carousel in each of the north sector, 

south sector, and north waiting hall. In this instance, a carousel in the north sector (#1) is out of service for 30 minutes, from 

3:00 to 3:30, affecting flights #2 to #8. The planning horizon is from 3:30 to 6:30. The instance has 185,223 variables and 

14,248,409 constraints.  

 

Table 2. Original Carousel Assignment of the Flights in the Small Instance 

 

Flight ID 1 2 3 4 5 6 7 8 

Large-sized flight No No Yes No No No No Yes 

Assigned carousel 1 1 2 3 1 2 3 1 

Starting time 01:30 03:00 04:00 04:30 04:30 04:30 04:30 04:30 

Ending time 03:00 04:30 05:30 06:00 06:00 06:00 06:00 06:00 

 

The proposed GA+2-Swap heuristic was used to solve the small instance, and the results were compared with those 

obtained by CPLEX. The results are presented in Table 3. The GA+2-Swap was able to obtain the optimal solution, 

demonstrating its potential effectiveness in solving the problem. Moreover, GA+2-Swap was computationally more efficient 

than CPLEX for solving this small instance. Notably, the algorithm converged at the 7 th iteration, well below the maximum 

number of iterations set at 300, resulting in a computational time of less than 0.9 seconds. 
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Table 3. Solution Results of GA+2-Swap and CPLEX for this Small Instance 

 

Solution method GA+2-Swap CPLEX 

Objective value (min) 520 520 

Total spatial disturbance (min) 20 20 

Total temporal disturbance (min) 50 50 

Total overlapping time (min) 450 450 

Computational time (sec) 0.9 3 

 

6.3 Numerical example results 

 

The results obtained by solving the numerical example using the GA+2-Swap algorithm and the manual approach currently 

used by the airport operator are shown in Table 4. In addition to presenting the objective value and computational time, this 

table provides the total temporal disturbance, total spatial disturbance, and total overlapping time of flights that are 

simultaneously using the same carousels. The proposed solution algorithm achieves a significantly better objective value 

(3,570 min) compared to the manual approach (4,120 min), with the majority of the improvement (550 min or 15.4%) coming 

from the reduction in total temporal disturbance and total overlapping time. The reduction in total temporal disturbance is 

particularly advantageous for the airline since it allows for the reassignment of flights to carousels without significant changes 

to the flight departure schedule. Furthermore, the workload of the baggage handling system can be reduced by decreasing the 

total overlapping time. Lastly, the computational time required for the GA+2-Swap algorithm to solve this instance is about 

two minutes (138.84 sec), which is significantly more efficient than the manual approach. 

The reassignment results show that most affected flights were relocated from the carousels in the north sector (numbers 

1 to 6) to the carousels in the north waiting hall (numbers 13 to 23) following a malfunction that occurred in the north sector 

between 11:00 and 14:00. This caused a larger spatial disturbance of 1,460 minutes. However, the temporal disturbance was 

relatively minor, with only 50 minutes, as most affected flights could be reassigned to available carousels in almost the same 

time intervals as their initial assignments. 

 

Table 4. Solution Results Obtained for this Numerical Example 

 

Items GA+2-Swap Manual 

Objective value (min) 3,570 4,120 

Total temporal disturbance (min) 50 680 

Total spatial disturbance (min) 1,460 350 

Total overlapping time (min) 2,060 3,090 

Computational time (min) 2.31 > 10 

 

6.4 Comparison of GA+2-Swap and GA+2PM 

 

To demonstrate the superiority of the proposed GA+2-Swap over the conventional GA with a mutation operator, this study 

implements a classical GA with a two-point mutation operator, referred to as GA+2PM, in which two randomly selected 

genes are exchanged to form a new chromosome. The performance of GA+2-Swap and GA+2PM for solving the numerical 

example described in Section 6.1 is compared.  

The crossover rate is 0.5, and the maximum number of generations is 300. The mutation rates (MR) examined range 

from low to high MRs, including 0.1, 0.3, 0.5, and 0.8. Ten evaluations of each algorithm and parameter combination are 

obtained to compute the average objective value. The results are shown in Figure 8, which indicates that for the three 

population sizes (100, 120, and 150) and four different MRs (0.1, 0.3, 0.5, and 0.8), the average objective value of GA+2-

Swap is lower than that of GA+2PM. This result demonstrates the superiority of GA+2-Swap over GA+2PM in terms of 

solution effectiveness. The computational times of GA+2-Swap and GA+2PM are similar (around 130 sec). Therefore, 

GA+2-Swap provides better solution quality without sacrificing much computational efficiency. 
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Figure 8. Comparison of GA+2-Swap and GA+2PM 

 

6.5 Scenario and sensitivity analyses 

 

A set of scenario and sensitivity analyses was conducted to examine the influence of the input parameters on the model 

solution. Although all major parameters were examined, only those with a significant influence on the solution are reported 

in this subsection. 

 

6.5.1 Carousel capacity 

 

The base case, as described in Section 5.1, allows a maximum of three flights to be assigned to a carousel simultaneously 

within a time interval (h). This parameter determines the carousel capacity, which affects the model through Constraint (3). 

One strategy the airport operator can use to deal with carousel malfunction events is to increase the carousel capacity by 

allowing a larger value for parameter h. To examine the influence of increasing carousel capacity on the model, the parameter 

is increased by one (h = 4) in addition to the base case (h = 3), as suggested by the airport operator. The computational results 

are shown in Table 5, which indicate a 1.13% decrease in objective value when h is increased to 4. Despite having the same 

total temporal disturbance (50 min) in both scenarios, the preferable solution would be to reassign flights to different carousels 

rather than postpone flights to later time intervals. Therefore, the temporal disturbances are the same and much lower than 

the spatial disturbances in both scenarios. The total overlapping time in the case of larger carousel capacity (h = 4) is smaller 

than that in the base case (h = 3), while the total spatial disturbance and the number of changes in carousel assignment are 

larger. 

Increasing the carousel capacity may lead to an increase in the total overlapping time for flights, as more flights 

simultaneously use the same carousels. This implies a heavier workload on the staff manning the baggage handling system, 

which is less preferred by the airport operator. However, increasing the carousel capacity could also result in more possible 

combinations for carousel assignment and more changes in carousel assignment, as shown in the table. Consequently, the 

total spatial disturbance could also increase with the carousel capacity. This scenario analysis shows that the effect of 

increasing carousel capacity on the total overlapping time may actually be counteracted by the effect on the total spatial 

disturbance. The computational times are similar in both scenarios, indicating that the solution algorithm is efficient and not 

very sensitive to this parameter (h). 

 

Table 5. Results of Scenario Analysis of the Carousel Capacity 

 

Carousel capacity h = 3 (base) h = 4 

Objective value (min) 3570 3530 (-1.13%) 

Total spatial disturbance (min) 1460 1700 

Total temporal disturbance (min) 50 50 

Total overlapping time (min) 2060 1780 

Number of changes in carousel assignment 30 37 

Computational time (sec) 138.39 132.9 
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6.5.2 Duration of the carousel malfunction event 

 

The influence of carousel malfunction duration on the solution of the model was examined, with the base case having a three-

hour event window (11:00-14:00). The scenario analysis includes four additional settings, and the results are presented in 

Table 6. The objective value increased with the event duration. As the event duration increased, more flights were affected, 

resulting in increased changes to carousel assignments, total spatial disturbance, and overlapping time. However, temporal 

disturbances remained low across all five scenarios due to the efficient reassignment of affected flights to available carousels. 

The computational times demonstrated the algorithm's efficiency, with computational efficiency only minimally impacted by 

event duration. 

 

Table 6. Sensitivity Analysis Result of the Event Duration 

Event duration (hr) 1 2 3 (base) 4 5 

Objective value (min) 
3030 

(-15.13%) 

3130 

(-12.32%) 

3570 

(±0%) 

3810 

(6.72%) 

4110 

(15.13%) 

Total spatial disturbance (min) 790 1090 1460 1560 1790 

Total temporal disturbance (min) 50 50 50 50 50 

Total overlapping time (min) 1190 1990 2060 2200 2270 

Number of changes in carousel assignment 22 25 30 37 40 

Computational time (sec) 132.84 136.4 138.39 138.23 137.56 

 

6.6 Discussion and Managerial Implications 

 

This study is the first to address the carousel reassignment problem, which aims to reassign a number of outbound flights to 

a set of available BUCs in response to temporary malfunctions. Most airport operators around the world currently use manual 

approaches based on past experience, which may lead to suboptimal results. The results of the above numerical experiments 

show that the proposed method outperforms the manual method currently used by the airport operator in terms of both solution 

quality and computational efficiency. Therefore, the proposed optimization method for carousel reassignment, which aims to 

minimize the spatial and temporal disturbances due to the reassignment, provides a systematic approach for the airport to 

efficiently reallocate affected flights to available carousel-time interval combinations. 

Typically, airport operations management involves making decisions about the allocation and scheduling of limited 

resources (e.g., check-in counters, runways, gates, and baggage carousels) for competing activities (e.g., flights) in a way that 

maximizes resource utilization. Optimization models and algorithms can be employed to facilitate these decisions. Although 

the proposed optimization model and heuristic were designed to address the carousel reassignment problem, the proposed 

approach and its basic concepts can be adapted to reassign or reschedule other types of airport resources for inbound or 

outbound flights in response to temporary malfunctions. Note that the primary objective of applying optimization approaches 

to the reassignment or rescheduling problems is to minimize the total disturbance due to the reassignment or rescheduling, 

with the total cost generally being of less concern to airport operators. Moreover, while the case study detailed in this paper 

uses data from an airport in Taiwan, the proposed approach can be adopted to solve the carousel reassignment problem in 

airports in other countries with some adjustments to the parameter settings in the model objective, constraints, and heuristic. 

The proposed approach can be applied to the production re-scheduling problem in industrial engineering. For instance, 

in a hybrid manufacturing system or its variants (e.g., Yilmaz and Durmuşoğlu, 2018a, 2018b, 2019), the machines in the 

system are considered as carousels, and the tasks (or products) are treated as flights (or their baggage). The approach can be 

utilized to resolve the multi-machine re-scheduling problem due to temporary machine malfunctions. In this case, the decision 

maker needs to reassign or re-schedule the production tasks to available machines such that some objectives (e.g., 

disturbances, costs, or completion time) are optimized. The optimization model for the machine rescheduling problem may 

need to minimize the changes in the assignment of the (affected) tasks to the available machines, in addition to the original 

objective or multiple objectives (e.g., average flow time, number of workers, and completion time). Furthermore, the idea of 

integrating a local search operator, such as 2-Swap, into the GA can be extended to existing evolutionary algorithms (e.g., 

NSGA-II) to solve multi-objective machine rescheduling problems. 

 

7. CONCLUDING REMARKS 
 

In this paper, we addressed the BUC reassignment problem by formulating it as a resource-constrained assignment problem. 

The objective is to minimize spatial and temporal disturbances as well as total overlapping time resulting from reassignment 

while ensuring that all affected flights are assigned. The model takes into account practical requirements important to the 
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airport operator. To solve practical-sized instances, this study developed a heuristic approach called GA+2-Swap. The 

proposed model and heuristic were evaluated using problem instances generated from real data from a major international 

airport in Taiwan. The results demonstrated that the proposed GA+2-Swap heuristic outperforms the manual method currently 

used by the airport operator and produces better solutions in a shorter amount of time. Our approach can assist the airport 

operator in making decisions on carousel reassignment in response to BUC malfunctions. 

There are several directions for future research, as discussed below. First, although the airport operator does not 

prioritize cost-related items, they may be considered in the objective function, particularly for other airport applications. The 

current model does not consider cost-related items with baggage handling or transportation in the objective function. This 

could lead to the underestimation of the impact of carousel reassignment on airport operations. Secondly, a more generalized 

definition of spatial and temporal disturbances is necessary for the model to be applicable to other airports. The current 

computation method of the spatial and temporal disturbances is primarily designed for the airport modeled in this study and 

might not be suitable for other airports. Thirdly, appropriate methods need to be developed to obtain good quality lower 

bounds to evaluate the effectiveness of the heuristic. The performance of the heuristic was evaluated and found to be superior 

to the manual approach currently used by the airport operator. However, note that the focus of this study is on developing a 

systematic approach to address the carousel reassignment problem and conducting preliminary tests. The development of 

other new algorithms and comparing their performance in solving the problem are non-trivial tasks that are beyond the scope 

of this paper but could be investigated in future studies. 
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