
International Journal of Industrial Engineering, 30(2), 350-372, 2023

DOI: 10.23055/ijietap.2023.30.2.8769 ISSN 1943-670X © INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING

 A DECOMPOSITION-BASED HEURISTIC ALGORITHM FOR PARALLEL

BATCH PROCESSING PROBLEM WITH TIME WINDOW CONSTRAINT

Anh H. G. Nguyen1 and Gwo-Ji Sheen2, *

1School of Industrial Engineering Management

International University

Ho Chi Minh, Vietnam

2Institute of Industrial Management

National Central University

Taoyuan, Taiwan

*Corresponding author’s e-mail: gjsheen@mgt.ncu.edu.tw

This study considers a parallel batch processing problem to minimize the makespan under constraints of arbitrary lot sizes,

start time window and incompatible families. We first formulate the problem with a mixed-integer programming model. Due

to the NP-hardness of the problem, we develop a decomposition-based heuristic to obtain a near-optimal solution for large-

scale problems when computational time is a concern. A two-dimensional saving function is introduced to quantify the value

of time and capacity space wasted. Computational experiments show that the proposed heuristic performs well and can deal

with large-scale problems efficiently within a reasonable computational time. For the small-size problems, the percentage of

achieving optimal solutions by the DH is 94.17%, which indicates that the proposed heuristic is very good in solving small-

size problems. For large-scale problems, our proposed heuristic outperforms an existing heuristic from the literature in terms

of solution quality.

Keywords: Scheduling; Parallel Batch Processing Problem; Time Window Constraint; Decomposition Approach; Saving

Method.

(Received on December 6, 2022; Accepted on February 20, 2023)

1. INTRODUCTION

We consider an identical parallel batch processing machine (BPM) scheduling problem when minimizing the makespan under

various constraints. The BPM scheduling problems with incompatible families were addressed by several researchers, such

as Uzsoy (1995); Koh et al. (2004); Bilyk et al. (2014); and Jia et al. (2016). However, time window constraints were not

considered in the aforementioned studies. Our study considers time window constraints which have been studied for several

problems such as cross-docking problem (Li et al., 2004), parallel machine scheduling problem (Bard and Rojanasoonthon,

2006; Brucker and Kravchenko, 2008; Lee et al., 2018), realistic cyclic scheduling problem (Shirvani et al., 2014), traveling

salesperson problem (Hungerländer and Truden, 2018), and vehicle routing problem (Hashemi et al., 2020). It is shown that

time window constraints are essential in the production environment but earn less attention in the context of parallel BPMs.

In recent years, researchers have shown significant interest in parallel BPMs. Due to the NP-hardness of the parallel BPMs,

most researchers solved their parallel BPMs by heuristic approaches. Note that we use the 𝛼 | 𝛽 | 𝛾 notation suggested by

(Graham et al., 1979) to describe each scheduling problem. The 𝛼 field describes the machine environment, the 𝛽 field

provides different process restrictions, and the 𝛾 field presents the performance measures. We discuss scheduling problems

with respect to these three dimensions in the remaining sections. Uzsoy (1995) presented heuristics based on the longest

processing time first and earliest due date first rules for the problems 𝑃𝑚|𝑏𝑎𝑡𝑐ℎ|𝐶𝑚𝑎𝑥 and 𝑃𝑚|𝑏𝑎𝑡𝑐ℎ|𝐿𝑚𝑎𝑥. Koh et al. (2004)

proposed several rule-based heuristics and designed a random key-based genetic algorithm (GA) for the problems

𝑃𝑚|𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒, 𝑠𝑖|𝐶𝑚𝑎𝑥(∑𝑤𝑖𝐶𝑖). Jia et al. (2016) also solved the problem 𝑃𝑚|𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒, 𝑠𝑖|𝐶𝑚𝑎𝑥 by

developing a metaheuristic based on max-min ant system. Chang et al. (2004) applied a simulated annealing algorithm to

address the problem 𝑃𝑚|𝑏𝑎𝑡𝑐ℎ, 𝑠𝑖|𝐶𝑚𝑎𝑥 which was also solved by a hybrid genetic heuristic in Kashan et al. (2008).

Balasubramanian et al. (2004) solved the problem 𝑃𝑚|𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒| ∑𝑤𝑖 𝑇𝑖 by developing different decomposition

approaches, which combined several dispatching rules with a proposed GA. Similar to Balasubramanian et al. (2004), Mönch

et al. (2005) proposed two decomposition approaches to deal with the problem 𝑃𝑚|𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒| ∑𝑤𝑖 𝑇𝑖 . Chiang et

mailto:gjsheen@mgt.ncu.edu.tw

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem

351

al. (2010) addressed the problem 𝑃𝑚|𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒, 𝑟𝑖| ∑𝑤𝑖 𝑇𝑖 by a memetic algorithm. In this memetic algorithm,

they proposed to encode batch formation and batch sequence simultaneously in the proposed chromosome, while machine

assignment was done during the decoding. Malve and Uzsoy (2007) combined iterative improvement heuristics with a GA

using the random key representation to solve the problem 𝑃𝑚|𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒, 𝑟𝑖|𝐿𝑚𝑎𝑥. Chung et al. (2009) proposed

a mixed integer programming (MIP) model, a MIP-based algorithm, and three constructive heuristics to address the problem

𝑃𝑚|𝑏𝑎𝑡𝑐ℎ, 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒, 𝑠𝑖 , 𝑟𝑖|𝐶𝑚𝑎𝑥 . Ozturk et al. (2014) presented a branch and bound-based heuristic for solving the

problem 𝑃𝑚|𝑏𝑎𝑡𝑐ℎ, 𝑠𝑖 , 𝑟𝑖 , 𝑝𝑖=𝑝|𝐶𝑚𝑎𝑥 . Zhou et al. (2018) developed a GA based on the random keys representation to address

the problem 𝑅𝑚|𝑏𝑎𝑡𝑐ℎ, 𝑠𝑖 , 𝑟𝑖|𝐶𝑚𝑎𝑥 . Besides, The aforementioned studies solved different parallel BPMs by either

mathematical models or near-optimal heuristics. The heuristic-based problem-solving approaches include genetic algorithm,

ant colony optimization, simulated annealing, tabu search, variable neighborhood search or decomposition approach.

According to Mathirajan and Sivakumar (2006), the decomposition approach, which has received considerable attention,

is one of the typical approaches for solving BPMs. The decomposition approach has also been applied successfully to solve

the BPMs with incompatible families by other researchers. Reichelt and Mönch (2006) proposed the three-phase approach,

including batch formation, batch assignment and batch sequencing, to solve the problem 𝑷𝒎|𝒃𝒂𝒕𝒄𝒉,
𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆, 𝒓𝒊| ∑𝒘𝒊𝑻𝒊 , 𝑪𝒎𝒂𝒙. Chung et al. (2009) developed two heuristics consisting of two phases, batch formation

and batch scheduling, for solving the problem 𝑷𝒎|𝒃𝒂𝒕𝒄𝒉, 𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆, 𝒔𝒊, 𝒓𝒊|𝑪𝒎𝒂𝒙. Almeder and Mönch (2011) proposed

to solve the problem 𝑷𝒎|𝒃𝒂𝒕𝒄𝒉, 𝒊𝒏𝒄𝒐𝒎𝒑𝒂𝒕𝒊𝒃𝒍𝒆|∑𝒘𝒊𝑻𝒊 by metaheuristics which are hybridized with a decomposition

heuristic and a local search. Cheng et al. (2014) proposed a polynomial time heuristic which is based on a two-phase

decomposition approach for the problem 𝑷𝒎|𝒃𝒂𝒕𝒄𝒉, 𝒔𝒊|𝑪𝒎𝒂𝒙 . Arroyo and Leung (2017a) developed two-phase

decomposition heuristics to address the problem 𝑹𝒎|𝒃𝒂𝒕𝒄𝒉, 𝒔𝒊, 𝒓𝒊|𝑪𝒎𝒂𝒙. It shows that the decomposition approach divides

a parallel BPM into several sub-problems and solves sub-problem by sub-problem to obtain a solution for the original problem.

Based on its advantages, in this study, we also propose a decomposition-based heuristic to obtain a near-optimal solution for

our large-scale problem.

The above literature indicates that the parallel BPMs with incompatible families have been one of an interesting topic

for many researchers. This paper contributes to the literature for parallel BPMs with incompatible families by further

considering the practical start time window constraints. To solve the studied problem, a MIP model is first proposed to obtain

optimal solutions. We then develop an efficient decomposition-based heuristic, which includes two phases - batch formation

and batch scheduling, to deal with the large-scale problem. Extended from the idea of the saving method of Clarke and Wright

(1964), a new two-dimensional saving function is introduced to quantify the saving space of time and capacity, which is a

basis for the batch formation in our proposed heuristic while two priority rules are proposed to address the batch scheduling

phase. The paper is structured as follows. Our problem description and the MIP formulation are given in Section 2. A

decomposition-based heuristic is developed in Section 3. In Section 4, the computational result for randomly generated

instances is reported. Concluding remarks are given in Section 5.

2. PROBLEM DESCRIPTION AND MIP MODEL FORMULATION

2.1. Problem description and assumptions

Our studied problem is motivated by the wafer fabrication procedure in semiconductor manufacturing. In wafer fabrication,

multiple diffusion work centers provide similar processing capabilities, and each diffusion work center consists of multiple

identical machines. Each diffusion machine can process several lots at the same time, which means that the diffusion machines

in wafer fabs are an example of batch-processing machines. Each lot contains a fixed number of wafers and is classified into

a specific product family/recipe according to its processing temperature, steps and chemical characteristics required for the

diffusion process. The diffusion processes are long and allow batching of lots with the same family/recipe. The batching

process is allowed only of lots of the same recipe, and a batch has a capacity limit that is recipe-dependent. According to

Mönch et al. (2012), in wafer fabrication, time constraints between consecutive process steps are important restrictions. For

instance, there is often a time restriction between operations in the etch work area and oxidation/diffusion work area. The

time windows are installed to prevent native oxidation and contamination effects on the wafer surface. To derive time

constraints to the scheduling problem, lots are recommended their own time windows to be processed. Lots that cannot be

processed during the recommended time windows will be eliminated or scrapped when rework is generally not allowed for

the scrapped lots. In this study, diffusion machines are assumed to model as parallel batch processing machines with

incompatible job families and time window constraints.

Moreover, according to Mönch et al. (2012), there are several performance measures for the entire wafer fabs, but the

most important among them are cycle time, throughput, and on-time delivery performance measures. Increasing throughput

or bottleneck utilization leads to smaller cost per wafer, reducing cycle time results in lower financial holding costs and

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem

352

enhancing on-time delivery performance increases customer satisfaction. In our study, the throughput measure is derived for

the studied scheduling problem by considering the objective to minimize makespan. As defined in Pinedo (1995), makespan is

equivalent to the completion time of the last job to leave the system. Thus minimizing makespan results in a higher throughput

value and a lower wafer production cost which is one of the important targets of the fabrication process. According to Graham

et al. (1979), our strongly NP-hard problem can be expressed as 𝑃𝑚|𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒, 𝑠𝑖 , 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤|𝐶𝑚𝑎𝑥 . In

addition, the following assumptions are considered for the problem formulation as follows:

• There are 𝑀 parallel machines to batch and process 𝑁 lots. All the data, including lot processing times 𝑝𝑖 , release

time 𝑟𝑖, remaining lifetime 𝑅𝑖 and lot size 𝑠𝑖 are deterministic and are known in advance.

• All the batch-processing machines are identical in nature.

• The machines are available at the beginning of the scheduling.

• Each machine can only process one batch at a time.

• Preemption and machine breakdown are not allowed.

• Each lot 𝑖 must be processed within its start time window [𝑟𝑖 , 𝑟𝑖 + 𝑅𝑖]; otherwise, the lot will be scrapped.

• Suppose that lot 𝑖 is in batch 𝐵𝑏 (𝑏 = 1,… , 𝐵), the batch 𝐵𝑏 has its start time window [𝐸𝑆𝑏
𝐵 , 𝐿𝑆𝑏

𝐵] with 𝐸𝑆𝑏
𝐵=

𝑚𝑎𝑥 {𝑟𝑖|𝑖 ∈ 𝐵𝑏} and 𝐿𝑆𝑏
𝐵 = 𝑚𝑖𝑛{(𝑟𝑖 + 𝑅𝑖)|𝑖 ∈ 𝐵𝑏}.

• All lots with the same recipe have the same processing time.

• A batch can only consist of lots with the same recipe.

• The size of each lot cannot exceed the capacity of any batch.

2.2. MIP model formulation

In this section, our problem is formulated by a MIP model. The notations used are presented in Appendix A.

Minimize 𝐶𝑚𝑎𝑥 (1)

Subject to

∑ ∑ 𝑋𝑗,𝑏,𝑖
𝐵
𝑏=1

𝑀
𝑗=1 = 1 ∀𝑖 (2)

𝑳𝑌𝑗,𝑏,𝑒 ≥ ∑ ℎ𝑖,𝑒𝑋𝑗,𝑏,𝑖
𝑁
𝑖=1 ∀𝑗, 𝑏, 𝑒 (3)

∑ ℎ𝑖,𝑒𝑋𝑗,𝑏,𝑖
𝑁
𝑖=1 ≥ 𝑌𝑗,𝑏,𝑒 ∀𝑗, 𝑏, 𝑒 (4)

∑ 𝑠𝑖𝑋𝑗,𝑏,𝑖𝑖∈𝐽𝑒 ≤ 𝑈𝐵𝑒𝑌𝑗,𝑏,𝑒 ∀𝑗, 𝑏, 𝑒 (5)

∑ 𝑌𝑗,𝑏,𝑒
𝐸
𝑒=1 ≤ 1 ∀𝑗, 𝑏 (6)

𝑆𝑗,𝑏 ≥ 𝑟𝑖𝑋𝑗,𝑏,𝑖 ∀𝑗, 𝑏, 𝑖 (7)

𝑆𝑗,𝑏 ≤ 𝑟𝑖 + 𝑅𝑖 + 𝑳(1 − 𝑋𝑗,𝑏,𝑖) ∀𝑗, 𝑏, 𝑖 (8)

𝐹𝑗,𝑏 − 𝑆𝑗,𝑏 ≥ 𝑝𝑖𝑋𝑗,𝑏,𝑖 ∀𝑗, 𝑏, 𝑖 (9)

𝐹𝑗,𝑏 ≤ 𝑆𝑗,𝑏+1 ∀𝑗, 1 ≤ 𝑏 ≤ 𝐵 − 1 (10)

𝑆𝑗,𝑏+1 ≤ 𝐹𝑗,𝑏 + 𝑳∑ 𝑋𝑗,𝑏+1,𝑖
𝑁
𝑖=1 ∀𝑗, 1 ≤ 𝑏 ≤ 𝐵 − 1 (11)

𝐹𝑗,𝑏 ≤ 𝐶𝑚𝑎𝑥 ∀𝑗, 𝑏 (12)

Objective (1) is to minimize the makespan. Constraint (2) imposes that each lot can be assigned to only one batch.

Constraints (3) and (4) ensure that recipe 𝑒 is processed by batch 𝑏 on machine 𝑗 when lot 𝑖 using recipe 𝑒 is assigned to

batch 𝑏 on machine 𝑗. Constraint (5) guarantees that total lot sizes in a batch cannot exceed the batch capacity. Constraint (6)

ensures that each batch can have at most one recipe. Constraints (7) and (8) ensure that if lot 𝑖 is assigned to batch 𝑏 on

machine 𝑗, then batch 𝑏’s start time window must satisfy lot 𝑖’s start time window. Constraint (9) indicates that if lot 𝑖 is

assigned to batch 𝑏 on machine 𝑗, then lot 𝑖’s processing time is within the range of batch 𝑏’s start and finish time. Constraints

(10) and (11) ensure that under the same machine, batch 𝑏’s finish time cannot be greater than batch (𝑏+1)’s start time.

Constraint (12) restricts that the objective makespan cannot be less than any batch’s finish time on machine 𝑗.

3. DECOMPOSITION-BASED HEURISTIC ALGORITHM

Here, our studied problem is decomposed into two sub-problems, which are solved separately. A decomposition-based

heuristic (DH) algorithm with two phases is proposed, and each phase addresses one corresponding sub-problem. Phase I is

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem

353

for batch formation, in which lots are grouped into several batches, and phase II is for batch scheduling, in which the formed

batches are scheduled on the parallel batch processing machines. In phase I, lots are grouped into batches in consideration of

the lot size, the incompatible families and the start time windows. We propose to form batches by an approach based on the

saving value. Clarke and Wright (1964) proposed a one-dimensional saving function to calculate the saved distance from

each pair of demand points. Then, starting from the largest saving value, the shipments are consolidated for a vehicle when

the consolidation does not violate the constraints such as vehicle capacity and time window. A similar one-dimensional saving

function can be found in several researchers, such as Çatay (2010); Pamosoaji et al. (2019); Segerstedt (2014); and Tarhini

et al. (2020). However, because our study needs to address not only the capacity but also the time, a new two-dimensional

saving function is proposed to calculate the saving value between any two batches in our batch formation phase. The concept

of two-dimensional function was also discussed in some studies, such as Chen et al. (2011), Jia and Leung (2014), Zhou et

al. (2014), and Jia et al. (2015). Before presenting our saving function, we need the following definitions. The notations used

in this section are presented in Appendix B.

Definition 1: A batch with unit size and unit processing time is defined as a ‘unit batch’. A batch 𝐵𝑏 with processing

time 𝑝𝑏
𝐵 and size 𝑠𝑏

𝐵 is composed of 𝑝𝑏
𝐵𝑠𝑏

𝐵 unit batches. Unit batch is a base for measuring time and capacity area wasted by

a batch.

Definition 2: Time and capacity wasted area for a batch is caused by the joint effect of the batch residual capacity and

the lot delay time in the batch processing. For any two batches 𝐵𝑘 and 𝐵𝑙 (𝑘, 𝑙 = 1, . . . , 𝑁; 𝑘 < 𝑙), there are two cases for

calculating time and capacity wasted area:

Case 1: When batches 𝐵𝑘 and 𝐵𝑙 are processed separately, time and capacity wasted area for each batch is only affected

by the batch residual capacity (see Figures 1-a, b). Time and capacity wasted area 𝑇𝐶𝑘,𝑙
′ is the sum of time and capacity wasted

areas for batches 𝐵𝑘 and 𝐵𝑙 as follows:

𝑇𝐶𝑘,𝑙
′ = [(Capacity of batch 𝐵𝑘 − total size of lots in batch 𝐵𝑘) × Processing time of batch 𝐵𝑘] +

[(Capacity of batch 𝐵𝑙 − total size of lots in batch 𝐵𝑙) × Processing time of batch 𝐵𝑙]

= [(𝑈𝐵𝑟𝑒𝑘
𝐵 − 𝑠𝑘

𝐵) 𝑝𝑘
𝐵] + [(𝑈𝐵𝑟𝑒𝑙

𝐵 − 𝑠𝑙
𝐵) 𝑝𝑙

𝐵].
(13)

Case 2: When batches 𝐵𝑘 and 𝐵𝑙 are merged into batch 𝐵𝑏 , there are two different situations needed to be considered

(see Figures 1-c, d). Each situation results in a different way to calculate time and capacity wasted area 𝑇𝐶𝑘,𝑙
′′ . They are stated

as follows:

𝑇𝐶𝑘,𝑙
′′ = [(Capacity of batch 𝐵𝑏 − total size of lots in batch 𝐵𝑏) × Processing time of batch 𝐵𝑏] +

[Difference between the earliest start time of two merged batches × Size of the batch

 with smaller earliest start time]

= {
(𝑈𝐵𝑟𝑒𝑏

𝐵 − (𝑠𝑘
𝐵 + 𝑠𝑙

𝐵)) 𝑝𝑏
𝐵 + (𝐸𝑆𝑙

𝐵 − 𝐸𝑆𝑘
𝐵)𝑠𝑘

𝐵 if 𝐸𝑆𝑘
𝐵 ≤ 𝐸𝑆𝑙

𝐵

(𝑈𝐵𝑟𝑒𝑏
𝐵 − (𝑠𝑘

𝐵 + 𝑠𝑙
𝐵)) 𝑝𝑏

𝐵 + (𝐸𝑆𝑘
𝐵 − 𝐸𝑆𝑙

𝐵)𝑠𝑙
𝐵 if 𝐸𝑆𝑘

𝐵 > 𝐸𝑆𝑙
𝐵

 . (14)

Definition 3: Saving space value 𝑆𝑘,𝑙 is the value of space saved regarding time and capacity wasted area after merging

batches 𝐵𝑘 and 𝐵𝑙 (𝑘, 𝑙 = 1, . . . , 𝑁; 𝑘 < 𝑙) together; namely, a saving space value is the difference between 𝑇𝐶𝑘,𝑙
′ and 𝑇𝐶𝑘,𝑙

′′ .

There is no saving space value for any two batches which cannot be merged together. The two-dimensional saving space

value 𝑆𝑘,𝑙 is calculated as follows:

𝑆𝑘,𝑙 =
Time and capacity wasted area when batches 𝐵𝑘

and 𝐵𝑙 are processed separately
−

Time and capacity wasted area when batches 𝐵𝑘

and 𝐵𝑙 are merged into batch 𝐵𝑏

 = 𝑇𝐶𝑘,𝑙
′ − 𝑇𝐶𝑘,𝑙

′′

=

{

 [(𝑈𝐵𝑟𝑒𝑘
𝐵 − 𝑠𝑘

𝐵) 𝑝𝑘
𝐵]+ [(𝑈𝐵𝑟𝑒𝑙

𝐵 − 𝑠𝑙
𝐵) 𝑝𝑙

𝐵] − [(𝑈𝐵𝑟𝑒𝑏
𝐵 − (𝑠𝑘

𝐵+𝑠𝑙
𝐵)) 𝑝𝑏

𝐵+(𝐸𝑆𝑙
𝐵 − 𝐸𝑆𝑘

𝐵)𝑠𝑘
𝐵] if 𝐸𝑆𝑘

𝐵≤𝐸𝑆𝑙
𝐵, 𝑟𝑒𝑘

𝐵=𝑟𝑒𝑙
𝐵;

[(𝑈𝐵𝑟𝑒𝑘
𝐵 − 𝑠𝑘

𝐵) 𝑝𝑘
𝐵]+ [(𝑈𝐵𝑟𝑒𝑙

𝐵 − 𝑠𝑙
𝐵) 𝑝𝑙

𝐵] − [(𝑈𝐵𝑟𝑒𝑏
𝐵 − (𝑠𝑘

𝐵+𝑠𝑙
𝐵)) 𝑝𝑏

𝐵+(𝐸𝑆𝑘
𝐵 − 𝐸𝑆𝑙

𝐵)𝑠𝑙
𝐵] if 𝐸𝑆𝑘

𝐵>𝐸𝑆𝑙
𝐵, 𝑟𝑒𝑘

𝐵=𝑟𝑒𝑙
𝐵;

0 , otherwise.

 (15)

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem

354

a) When batches 𝐵𝑘 and 𝐵𝑙 are processed

separately (𝐸𝑆𝑘
𝐵 ≤ 𝐸𝑆𝑙

𝐵)

c) When batches 𝐵𝑘 and 𝐵𝑙 are merged

into batch 𝐵𝑏 (𝐸𝑆𝑘
𝐵 ≤ 𝐸𝑆𝑙

𝐵)

b) When batches 𝐵𝑘 and 𝐵𝑙 are processed

separately (𝐸𝑆𝑘
𝐵 > 𝐸𝑆𝑙

𝐵)

d) When batches 𝐵𝑘 and 𝐵𝑙 are merged

into batch 𝐵𝑏 (𝐸𝑆𝑘
𝐵 > 𝐸𝑆𝑙

𝐵)
Figure 1. Illustration of time and capacity wasted area

Phase I, the batch formation, is summarized as follows. Each lot initially forms its own batch. We then compute the

saving space value for each pair of batches based on the saving space value function Equation (15). Two batches, starting

with the largest positive saving value, are merged in consideration of constraints such as lot start time windows and batch

capacity. After a new batch is formed, the saving value for each pair of batches is then re-calculated. The batching process

continues until no positive saving values exist.

Definition 4: Two priority rules are proposed for Phase II of the DH algorithm. Here, ES (resp. LS) stands for the

earliest start time (resp. the latest start time).

1. EST (earliest start time) rule: When a machine is freed, the batch with the smallest ES among those not yet

processed is put on the machine.

2. LST (latest start time) rule: When a machine is freed, the batch with the smallest LS among those not yet processed

is put on the machine.

Phase II, the batch scheduling, consists of two procedures. In the first procedure, the formed batches from phase I are

assigned to machines according to the EST rule. This procedure gives non-delay schedules, where a machine is never left

idle when a batch is available for processing. The EST rule is applied to assign batches to machines by several literatures,

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem

355

such as Chung et al. (2009), Damodaran and Vélez-Gallego (2012), and Arroyo and Leung (2017a,b). These papers have in

common assigned batches to machines by using the batch earliest start times. As discussed above, our study further considers

the batch start time window constraint when assigning batches to machines. Thus, we introduce a feasibility condition for a

solution found by the first procedure to ensure that all the batch start time windows are satisfied. The feasibility condition,

namely Condition 1, is shown in detail as follows.

For instance, 𝑰 of our problem, let sequence ℒ𝐸𝑆𝑇 be a sorted sequence according to the non-decreasing order of batch

earliest start time for un-assigned batches. Let batch 𝑏1
𝐸𝑆𝑇 be the first batch in sequence ℒ𝐸𝑆𝑇 and 𝐿𝑆

𝑏1
𝐸𝑆𝑇
𝐵 be the latest start

time of batch 𝑏1
𝐸𝑆𝑇. Let 𝑇𝑗∗

𝐸𝑆𝑇 be the earliest available time among machines such that 𝑇𝑗∗
𝐸𝑆𝑇 = 𝑚𝑖𝑛

𝑗=1,…,𝑀
{𝑇𝑗

𝐸𝑆𝑇} when assigning

batch 𝑏1
𝐸𝑆𝑇.

Condition 1: If the inequality 𝐿𝑆
𝑏1
𝐸𝑆𝑇
𝐵 ≥ 𝑇𝑗∗

𝐸𝑆𝑇 holds for every batch in sequence ℒ𝐸𝑆𝑇 , then there exists a feasible

solution for instance 𝑰.
However, the first procedure, which uses only the batch earliest start times for making decisions, may not find a feasible

solution but actually there exists one. Consider the 3-batch, 2-machine example with batch information: 𝐸𝑆1
𝐵 = 0, 𝐸𝑆2

𝐵 = 2,

𝐸𝑆3
𝐵 = 1 , 𝐿𝑆1

𝐵 = 2 , 𝐿𝑆2
𝐵 = 3 , 𝐿𝑆3

𝐵 = 4 , 𝑝1
𝐵 = 6 , 𝑝2

𝐵 = 1 and 𝑝3
𝐵 = 4 . According to the EST rule, we have ℒ𝐸𝑆𝑇 =

(𝐵1, 𝐵3, 𝐵2). Then, batch 𝐵1 is assigned to machine 𝑀1 and batch 𝐵3 is assigned to machine 𝑀2, leading to later violating the

start time window of batch 𝐵2. This is because when assigning batch 𝐵2, machine 𝑀2 is the machine with the earliest available

time but 𝑇2
𝐸𝑆𝑇 > 𝐿𝑆2

𝐵 (i.e., 5 > 4). Thus, as stated in Condition 1, no feasible solution is found by the first procedure (see

Figure 2-a). But there does exist a feasible solution for the example, as depicted in Figure 2-b. Figure 2 is used to demonstrate

the two situations for the described example. One is for assigning batches to machines according to the EST rule in which no

feasible solution is found. Another is for the assignment of batches to machines according to the LST rule, where a feasible

solution can be obtained.

When the first procedure cannot find a feasible solution, we will switch to use the second procedure. The second

procedure basically applies the LST rule when considering Condition 2 and Condition 3. The LST rule is motivated by a

well-known dispatching rule, Earliest Due Date first (EDD), where a batch with an earlier due date has a higher priority.

Let sequence ℒ𝐿𝑆𝑇 be a sorted sequence according to non-decreasing order of batch latest start time for un-assigned

batches. Let batch 𝑏1
𝐿𝑆𝑇 be the first batch in sequence ℒ𝐿𝑆𝑇 and 𝐿𝑆

𝑏1
𝐿𝑆𝑇
𝐵 be the latest start time of batch 𝑏1

𝐿𝑆𝑇. Let 𝑇𝑗∗
𝐿𝑆𝑇 be the

earliest available time among machines when assigning batch 𝑏1
𝐿𝑆𝑇. At time 𝑇𝑗∗

𝐿𝑆𝑇, let batch 𝑏2
𝐿𝑆𝑇 be the critical batch such

that 𝑚𝑎𝑥 (𝐸𝑆
𝑏2
𝐿𝑆𝑇
𝐵 , 𝑇𝑗∗

𝐿𝑆𝑇) + 𝑝
𝑏2
𝐿𝑆𝑇
𝐵 = 𝑚𝑖𝑛

𝑏 𝑖𝑛 ℒ𝐿𝑆𝑇,𝑏≠𝑏1
𝐿𝑆𝑇
(𝑚𝑎𝑥(𝐸𝑆𝑏

𝐵, 𝑇𝑗∗
𝐿𝑆𝑇) + 𝑝𝑏

𝐵). Similar to Condition 1, Condition 2 is the

feasibility condition for a solution found by the second procedure to ensure that all the batch start time windows are satisfied.

Condition 3 is used to determine that at time 𝑇𝑗∗
𝐿𝑆𝑇, either the first batch 𝑏1

𝐿𝑆𝑇 or the critical batch 𝑏2
𝐿𝑆𝑇 in the sequence ℒ𝐿𝑆𝑇

should be assigned next.

Condition 2: If the inequality 𝐿𝑆
𝑏1
𝐿𝑆𝑇
𝐵 ≥ 𝑇𝑗∗

𝐿𝑆𝑇 holds for every batch in sequence ℒ𝐿𝑆𝑇 , then there exists a feasible

solution for instance 𝑰.

 𝐵3

𝑀1

𝑀2

Time 1 6

𝐵1

Machine

0

a) No feasible solution is found by the EST rule

5

 𝐵3

𝑀1

𝑀2

2 7

𝐵1

Time

Machine

0

b) There exists a feasible solution

6 3

𝐵2

Figure 2. Illustrative example for the situation when the EST rule cannot find a feasible solution

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem

356

Condition 3: At time 𝑇𝑗∗
𝐿𝑆𝑇, batch 𝑏1

𝐿𝑆𝑇 is assigned to machine 𝑀𝑗∗ if 𝐿𝑆𝑏1𝐿𝑆𝑇
𝐵 < 𝑚𝑎𝑥 (𝐸𝑆

𝑏2
𝐿𝑆𝑇
𝐵 , 𝑇𝑗∗

𝐿𝑆𝑇) + 𝑝
𝑏2
𝐿𝑆𝑇
𝐵 ; otherwise,

batch 𝑏2
𝐿𝑆𝑇 is assigned to machine 𝑀𝑗∗.

The following example is used to illustrate the situation when the pure LST rule cannot find a feasible solution, but

there does exist one. Consider the 3-batch, 2-machine example with batch information: 𝐸𝑆1
𝐵 = 0, 𝐸𝑆2

𝐵 = 1, 𝐸𝑆3
𝐵 = 2, 𝐿𝑆1

𝐵 =
3, 𝐿𝑆2

𝐵 = 4, 𝐿𝑆3
𝐵 = 5, 𝑝1

𝐵 = 6, 𝑝2
𝐵 = 5 and 𝑝3

𝐵 = 1. According to the LST rule, we have ℒ𝐿𝑆𝑇 = (𝐵1, 𝐵2, 𝐵3). Then, if batch

𝐵1 is assigned to machine 𝑀1 and batch 𝐵2 is assigned to machine 𝑀2, this will lead to no feasible solution because batch 𝐵3

cannot be scheduled due to the violation of Condition 2 (see Figure 3-a). However, there exists a feasible solution for the

example (see Figure 3-b). Figure 3 is used to illustrate the two situations for the above example. The first one is for assigning

batches to machines according to the pure LST rule, where no feasible solution is obtained. The second is for the assignment

of batches to machines according to the pure LST rule with, further considering Condition 3, where a feasible solution can

be found.

Next, the pseudo-code of our proposed DH algorithm is presented:

DH algorithm

Input: 𝑟𝑒𝑖
𝐿 , 𝑠𝑖

𝐿 , 𝑝𝑖
𝐿 , 𝑟𝑖

𝐿 , 𝑅𝑖
𝐿 for 𝑖 = 1,… , 𝑁; 𝑈𝐵𝑒 for 𝑒 = 1,… , 𝐸; ℎ = 𝑁.

Output: The solution with its makespan.

Phase I:

Assign each lot to a batch separately:

For 𝑏 = 1,… , 𝑁 do

𝐵𝑏 = {𝑏}; 𝑟𝑒𝑏
𝐵 = 𝑟𝑒𝑏

𝐿 , 𝑠𝑏
𝐵 = 𝑠𝑏

𝐿, 𝑝𝑏
𝐵 = 𝑝𝑏

𝐿 , 𝐸𝑆𝑏
𝐵 = 𝑟𝑏

𝐿, 𝐿𝑆𝑏
𝐵 = 𝑟𝑏

𝐿 + 𝑅𝑏
𝐿;

End For

Let 𝓑 = {1,… , 𝑁};
Calculate saving value for every pair of batches in 𝓑:

For 𝑘, 𝑙 ∈ 𝓑; 𝑘 < 𝑙 do

Calculate 𝑆𝑘,𝑙 by Eq. (15);

End For

Repeat

Let 𝑘∗, 𝑙∗ be such that 𝑆𝑘∗,𝑙∗ = max
𝑘,𝑙∈𝓑; 𝑘<𝑙

{𝑆𝑘,𝑙}

If (𝑚𝑎𝑥(𝐸𝑆𝑘∗
𝐵 , 𝐸𝑆𝑙∗

𝐵) ≤ 𝑚𝑖𝑛(𝐿𝑆𝑘∗
𝐵 , 𝐿𝑆𝑙∗

𝐵)) and (𝑠𝑘∗
𝐵 + 𝑠𝑙∗

𝐵 ≤ 𝑈𝐵𝑟𝑒𝑘∗
𝐵) then

ℎ = ℎ + 1;

Merge batches 𝐵𝑘∗ and 𝐵𝑙∗ to form a new batch 𝐵ℎ: 𝐵ℎ = 𝐵𝑘∗ ∪ 𝐵𝑙∗;
Remove 𝑘∗, 𝑙∗ from 𝓑, and add ℎ to 𝓑;

Determine batch 𝐵ℎ information:

𝑟𝑒ℎ
𝐵 = 𝑟𝑒𝑘∗

𝐵 , 𝑝ℎ
𝐵 = 𝑝𝑘∗

𝐵 , 𝑠ℎ
𝐵 = 𝑠𝑘∗

𝐵 + 𝑠𝑙∗
𝐵 ;

𝐸𝑆ℎ
𝐵 = 𝑚𝑎𝑥(𝐸𝑆𝑘∗

𝐵 , 𝐸𝑆𝑙∗
𝐵), 𝐿𝑆ℎ

𝐵 = 𝑚𝑖𝑛(𝐿𝑆𝑘∗
𝐵 , 𝐿𝑆𝑙∗

𝐵);

Re-calculate saving value for every pair of batches in 𝓑:

For 𝑘, 𝑙 ∈ 𝓑; 𝑘 < 𝑙 do

Calculate 𝑆𝑘,𝑙 by Eq. (15);

𝑀1

𝑀2

Time 1 6

𝐵1

𝐵2

Machine

0

a) No feasible solution is found by the pure LST rule

2

 𝐵1

𝐵2
𝑀1

𝑀2

Time 8

𝐵3

Machine

0

b) There exists a feasible solution

6 3

Figure 3. Illustrative example for the situation when the pure LST rule cannot find a feasible solution

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem

357

End For

End If

 Until all 𝑆𝑘,𝑙 = 0 for 𝑘, 𝑙 ∈ 𝓑; 𝑘 < 𝑙.
Phase II:

Let 𝓛𝑬𝑺𝑻 be a sequence of all formed batches in 𝓑, being re-indexed according to the non-decreasing order of batch earliest

start time such that 𝐸𝑆1
𝐵 ≤ 𝐸𝑆2

𝐵 ≤ ⋯ ≤ 𝐸𝑆|𝓑|
𝐵 ;

𝑇𝑗
𝐸𝑆𝑇 = 0, 𝑆𝑗

𝐸𝑆𝑇 = () for 𝑗 = 1,… ,𝑀, 𝑠𝑒𝑐𝑜𝑛𝑑_𝑟𝑢𝑛 = 𝐹𝑎𝑙𝑠𝑒;

While 𝓛𝑬𝑺𝑻 is not empty do:

Let batch 𝑏1
𝐸𝑆𝑇be the first batch in 𝓛𝑬𝑺𝑻;

Let machine 𝑗∗ be the machine such that 𝑇𝑗∗
𝐸𝑆𝑇 = 𝑚𝑖𝑛

𝑗=1,…,𝑀
(𝑇𝑗

𝐸𝑆𝑇);

If 𝐿𝑆
𝑏1
𝐸𝑆𝑇
𝐵 ≥ 𝑇𝑗∗

𝐸𝑆𝑇 then

Assign batch 𝑏1
𝐸𝑆𝑇 to machine 𝑗∗ by appending batch 𝑏1

𝐸𝑆𝑇 to 𝑆𝑗∗
𝐸𝑆𝑇; Remove 𝑏1

𝐸𝑆𝑇 from 𝓛𝑬𝑺𝑻;

Determine information of batch 𝑏1
𝐸𝑆𝑇: 𝐵𝑆

𝑏1
𝐸𝑆𝑇
 𝑗∗

= 𝑚𝑎𝑥 (𝐸𝑆
𝑏1
𝐸𝑆𝑇
𝐵 , 𝑇𝑗∗

𝐸𝑆𝑇); 𝐵𝐶
𝑏1
𝐸𝑆𝑇
𝑗∗

= 𝐵𝑆
𝑏1
𝐸𝑆𝑇
 𝑗∗

+ 𝑝
𝑏1
𝐸𝑆𝑇
𝐵 ;

Update available time of machine 𝑗∗: 𝑇𝑗∗
𝐸𝑆𝑇 = 𝐵𝐶

𝑏1
𝐸𝑆𝑇
𝑗∗

;

Else:

𝑠𝑒𝑐𝑜𝑛𝑑_𝑟𝑢𝑛 = 𝑇𝑟𝑢𝑒;

Set 𝓛𝑬𝑺𝑻 is empty;

End While

If 𝑠𝑒𝑐𝑜𝑛𝑑_𝑟𝑢𝑛 then

Let 𝓛𝑳𝑺𝑻 be a sequence of all formed batches in 𝓑, being re-indexed according to non-decreasing order of batch latest

start time; namely, 𝐿𝑆1
𝐵 ≤ 𝐿𝑆2

𝐵 ≤ ⋯ ≤ 𝐿𝑆|𝓑|
𝐵 ;

𝑇𝑗
𝐿𝑆𝑇 = 0, 𝑆𝑗

𝐿𝑆𝑇 = () for 𝑗 = 1,… ,𝑀;

While 𝓛𝑳𝑺𝑻 is not empty do:

Let batch 𝑏1
LST be the first batch in 𝓛𝑳𝑺𝑻;

Let machine 𝑗∗ be the machine such that 𝑇𝑗∗
𝐿𝑆𝑇 = 𝑚𝑖𝑛

𝑗=1,…,𝑀
(𝑇𝑗

𝐿𝑆𝑇);

If 𝐿𝑆
𝑏1
𝐿𝑆𝑇
𝐵 ≥ 𝑇𝑗∗

𝐿𝑆𝑇 then

Let batch 𝑏2
𝐿𝑆𝑇be the batch such that 𝑚𝑎𝑥 (𝐸𝑆

𝑏2
𝐿𝑆𝑇
𝐵 , 𝑇𝑗∗

𝐿𝑆𝑇) + 𝑝
𝑏2
𝐿𝑆𝑇
𝐵 = 𝑚𝑖𝑛

𝑏 in 𝓛𝑳𝑺𝑻 ,𝑏≠𝑏1
𝐿𝑆𝑇
(𝑚𝑎𝑥(𝐸𝑆𝑏

𝐵, 𝑇𝑗∗
𝐿𝑆𝑇) + 𝑝𝑏

𝐵);

If 𝐿𝑆
𝑏1
𝐿𝑆𝑇
𝐵 < 𝑚𝑎𝑥 (𝐸𝑆

𝑏2
𝐿𝑆𝑇
𝐵 , 𝑇𝑗∗

𝐿𝑆𝑇) + 𝑝
𝑏2
𝐿𝑆𝑇
𝐵 then

Assign batch 𝑏1
𝐿𝑆𝑇 to machine 𝑗∗ by appending batch 𝑏1

𝐿𝑆𝑇 to 𝑆𝑗∗
𝐿𝑆𝑇; Remove 𝑏1

𝐿𝑆𝑇 from 𝓛𝑳𝑺𝑻;

Determine information of 𝑏1
𝐿𝑆𝑇 : 𝐵𝑆

𝑏1
𝐿𝑆𝑇
 𝑗∗

= 𝑚𝑎𝑥 (𝐸𝑆
𝑏1
𝐿𝑆𝑇
𝐵 , 𝑇𝑗∗

𝐿𝑆𝑇); 𝐵𝐶
𝑏1
𝐿𝑆𝑇
𝑗∗

= 𝐵𝑆
𝑏1
𝐿𝑆𝑇
 𝑗∗

+ 𝑝
𝑏1
𝐿𝑆𝑇
𝐵 ;

Update available time of machine 𝑗∗: 𝑇𝑗∗
𝐿𝑆𝑇 = 𝐵𝐶

𝑏1
𝐿𝑆𝑇
𝑗∗

;

Else:

Assign batch 𝑏2
𝐿𝑆𝑇 to machine 𝑗∗ by appending batch 𝑏2

𝐿𝑆𝑇 to 𝑆𝑗∗
𝐿𝑆𝑇; Remove 𝑏2

𝐿𝑆𝑇 from 𝓛𝑳𝑺𝑻;

Determine information of 𝑏2
𝐿𝑆𝑇: 𝐵𝑆

𝑏2
𝐿𝑆𝑇
 𝑗∗

= 𝑚𝑎𝑥 (𝐸𝑆
𝑏2
𝐿𝑆𝑇
𝐵 , 𝑇𝑗∗

𝐿𝑆𝑇); 𝐵𝐶
𝑏2
𝐿𝑆𝑇
𝑗∗

= 𝐵𝑆
𝑏2
𝐿𝑆𝑇
 𝑗∗

+ 𝑝
𝑏2
𝐿𝑆𝑇
𝐵 ;

Update available time of machine 𝑗∗: 𝑇𝑗∗
𝐿𝑆𝑇 = 𝐵𝐶

𝑏2
𝐿𝑆𝑇
𝑗∗

;

Else:

No feasible solution is found.

End While

End If

The computational complexity of the proposed algorithm can be determined as follows: the time complexity of Phase I

is O(𝑛3) while the time complexity of Phase II is O(𝑛2(log (𝑛)). Thus, the proposed DH algorithm is then referred to as an

O(𝑛3) algorithm.

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem

358

4. COMPUTATIONAL RESULTS

We conduct experiments to evaluate the effectiveness of our proposed MIP model and DH heuristic. The proposed heuristic

is coded in Python and run on an Intel(R) Core(TM) i7-8550UCPU at 1.8GHz with 8GB of RAM memory. The Gurobi 8.0.1

solver is used for the MIP model. To prevent excessive computation time, the running time limit is set to 3600 seconds (i.e.,

one hour).

4.1. Experiment design

Two computational tests are designed to evaluate the performance of the proposed algorithm. The first test is to evaluate the

solution quality of the proposed algorithm, while the second test is used to show how well our proposed algorithm performs

for large-size problems. Because the MIP can solve only small-size instances, this first test is conducted only on small-size

problems and has 48 different combinations of factors. For each combination of the 48 combinations, we randomly generate

10 problem instances. The second test is designed to compare our proposed algorithm to the heuristics proposed in Koh et al.

(2004) for the problem 𝑃𝑚|𝑏𝑎𝑡𝑐ℎ, 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒, 𝑠𝑖|𝐶𝑚𝑎𝑥 without time window constraints. Koh et al. (2004) proposed

three simple heuristics and two GAs for solving the problem and indicated that the simple heuristic LFLT (largest job first fit

batching and longest processing time sequencing) outperformed other heuristics and GAs. Therefore, we will only compare

our algorithm with the LFLT heuristic. Note that LFLT is the heuristic in which batches are formed by the order of job sizes,

and batch sequencing for the machines is based on the order of batch processing times. The testing instances are randomly

generated according to the setting used in Koh et al. (2004). For each combination of 36 combinations, we randomly generate

20 problem instances. The factors and the levels for generating instances are shown in Table 1.

Table 1. Experimental factors for small-size and large-size problems

Factor Small-size instances Count
Large-size instances

(Koh et al., 2004)
Count

Number of machines, 𝑀

Number of lots, 𝑁

Number of recipes, 𝐸

Processing time, 𝑃𝑒

Lot size, 𝑠𝑖
Batch capacity, 𝑈𝐵𝑒

Release time, 𝑟𝑖
Remaining lifetime, 𝑅𝑖

Number of factor combinations

2, 3

10, 15, 20

3

𝑈[1, 10]
𝑈 [1, 15] & 𝑈 [15, 50]

𝑈 [50, 70]
𝑈 [0, 30] & 𝑈 [0, 60]

𝛼𝑝𝑖 (𝛼 =5, 10)

2

3

1

1

2

1

2

2

48

10, 30, 50

100, 200, 300

5, 10, 15, 20

𝑈[10𝑒,10𝑒 + 10]

𝑈[1,100]/100

1

-

-

3

3

4

1

1

1

-

-

36

4.2. Experimental results

4.2.1. Small-size instances

Tables 2, 3, and 4 present the experimental results obtained by the MIP model and the DH heuristic for small-size instances

with 10, 15, and 20 lots, respectively. In each table, the results are grouped by the number of machines (𝑀 = 2, 3). Columns

1 and 12 represent the run code for the instance with the combination of lot release times ranges (𝑟𝑖), remaining lifetime (𝑅𝑖),
and lot sizes ranges (𝑠𝑖), 𝑖 = 1, 2. For example, “r1R1s1” represents the instance with release time within 𝑈 [0, 30], remaining

lifetime with 𝛼 = 5 and lot size within 𝑈 [1, 15]. For each combination, ten problem instances are randomly generated. The

proposed heuristic’s improvement is calculated by 𝐼𝑀𝑃 (%) =
𝐻𝑒𝑢𝑠𝑜𝑙−𝑀𝑖𝑛𝑠𝑜𝑙

𝑀𝑖𝑛𝑠𝑜𝑙
× 100, where 𝐻𝑒𝑢𝑠𝑜𝑙 is the makespan value

obtained by the DH heuristic and 𝑀𝑖𝑛𝑠𝑜𝑙 is the makespan value obtained by the MIP model. For 𝑀 = 2, columns 2-3 (13-

14) report the 𝐶𝑚𝑎𝑥 and run time produced by the MIP model, respectively. Columns 4-6 (15-17) report the 𝐶𝑚𝑎𝑥, run time

and improvement obtained by the DH heuristic, respectively. While the corresponding columns 7-11 and 18-22 report the

results for 𝑀 = 3. Besides, Table 5 displays the performance comparison between the MIP model and the DH algorithm in

terms of solution quality (namely, number of problem instances receiving the optimal solutions and the worst 𝐼𝑀𝑃) and

computation time (namely, average run times).

The results from Tables 2-5 reveal that the proposed DH heuristic performs very efficiently and gets optimal

solutions for almost all small-size problems in a very short run time. For a total of 480 instances for small-size problems, the

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem

359

percentage of achieving optimal solutions by the DH is 94.17%. (452 out of 480). The high percentage indicates that the

proposed heuristic is very good in solving small-size problems. Even for the instances where the proposed heuristics cannot

obtain optimal solutions, the solution found is still quite close to the optimal solution. By comparing the results of our heuristic

with the optimal solutions, we can see that the worst 𝐼𝑀𝑃 value for the DH is only 9.68%. Concerning computation time, it

is shown that the proposed heuristic is significantly faster than the MIP model. The average run time of the MIP model on all

the instances is about 326.27 seconds, while the DH heuristic requires only 0.02 seconds on average to solve an instance.

4.2.2. Large-size instances

Table 6 presents the comparative results obtained by the LFLT and the DH heuristic for the large-size instances. The

performance of a heuristic is measured by 𝐺𝐴𝑃(%) =
𝐻𝑒𝑢𝑠𝑜𝑙 − LB

LB
× 100, where 𝐻𝑒𝑢𝑠𝑜𝑙 is the makespan value obtained by

the corresponding heuristic (e.g., DH or LFLT) and LB is the lower bound value. LB for each instance is used as the base

value for the comparison of the results found by LFLT and DH. The table consists of 36 combinations according to the levels

of 𝑁, 𝑀 and 𝐸. For each combination, the results of 20 test instances are summarized by two kinds of values, one of which

represents the average 𝐺𝐴𝑃 of the corresponding heuristic, while the other is a standard deviation of the average 𝐺𝐴𝑃 values.

A smaller average 𝐺𝐴𝑃 value indicates that the solution found by the corresponding heuristic is closer to the lower bound

averagely. In Table 6, the average 𝐺𝐴𝑃 of LFLT varies from 0 to 32.04%, while the average 𝐺𝐴𝑃 of DH varies from 0 to

22.79%. It indicates that the DH heuristic performs better than the LFLT heuristic. The results clearly show that our proposed

heuristic is efficient and produces results that are closer to the lower bound compared to the existing heuristic LFLT. From

the perspective of computational effort, the run time to get a solution from LFLT is shorter than one second. While the run

time of our proposed DH is longer and depends on the number of lots 𝑁. However, the run time of the heuristic is still in a

reasonable range in every instance. The average run time of the DH is about 5 seconds when 𝑁 = 100, about 70 seconds

when 𝑁 = 200, and about 350 seconds when 𝑁 = 300.

In order to validate the obtained results, we conduct the one-way ANOVA test and use the 𝐺𝐴𝑃 measure as the

response variable. We have a null hypothesis stating that the mean 𝐺𝐴𝑃 values of the two heuristics are equal. The ANOVA

table in Figure 4 shows that the 𝑝-𝑣𝑎𝑙𝑢𝑒 is 0.000, which is less than the significance level of 0.05; we reject the null

hypothesis that the two heuristics have the same mean 𝐺𝐴𝑃 values. We then use Tukey’s test to do the pairwise comparisons

between the two heuristics. The result of the Tukey test in Figure 4 shows that LFLT is in Group A while DH is in Group B

at the 95% confidence level, and there is a statistically significant difference between 𝐺𝐴𝑃 values of DH and LFLT. This

indicates that the mean of DH is significantly lower than the mean of LFLT. (Please see APPENDIX C for the results of all

instances).

Figure 4. ANOVA table and Tukey test table for LFLT and DH

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem A Decomposition-based Heuristic

360

 Table 2. Computational results for small-size problems with 10 lots

Note: “*” represents the best result found within 3600 seconds.

 Bold numbers represent the optimal solutions for each run code.

𝐼𝑀𝑃 𝐼𝑀𝑃 𝐼𝑀𝑃 𝐼𝑀𝑃

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem A Decomposition-based Heuristic

361

Table 3. Computational results for small-size problems with 15 lots

𝐼𝑀𝑃 𝐼𝑀𝑃 𝐼𝑀𝑃 𝐼𝑀𝑃

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem A Decomposition-based Heuristic

362

Table 4. Computational results for small-size problems with 20 lots

𝐼𝑀𝑃 𝐼𝑀𝑃 𝐼𝑀𝑃 𝐼𝑀𝑃

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem A Decomposition-based Heuristic

363

Table 5. Comparison between the MIP model and DH algorithm

Criteria MIP model DH algorithm

 Total number of small-size instances 480.00 480.00

 Solution quality
Number of instances receiving the optimal solutions 480.00 452.00

Worst 𝐼𝑀𝑃 (%) 0.00 9.68

 Average run times (seconds) 326.27 0.02

Table 6. Performance comparison between our DH heuristic and LFLT heuristic

𝑀 𝐸
 𝑁 = 100 𝑁 = 200 𝑁 = 300

LFLT DH LFLT DH LFLT DH

10 5 Avg. 𝐺𝐴𝑃 26.42 19.00 28.27 19.11 28.36 18.40

 SD 3.47 3.32 2.71 2.47 1.51 2.43

 10 Avg. 𝐺𝐴𝑃 18.10 13.35 24.38 16.67 26.05 17.21

 SD 3.50 4.07 2.65 2.92 1.73 1.89

 15 Avg. 𝐺𝐴𝑃 14.11 9.50 19.88 13.11 23.53 15.82

 SD 3.59 2.88 2.43 2.38 2.10 1.41

 20 Avg. 𝐺𝐴𝑃 8.90 6.09 18.42 12.69 21.36 14.18

 SD 4.03 3.70 2.71 2.45 2.10 1.92

30 5 Avg. 𝐺𝐴𝑃 22.79 21.10 30.18 21.58 31.17 21.75

 SD 5.36 7.43 4.36 2.88 2.52 2.93

 10 Avg. 𝐺𝐴𝑃 23.26 22.32 27.27 21.32 28.16 18.98

 SD 4.22 4.89 2.92 2.56 1.80 3.16

 15 Avg. 𝐺𝐴𝑃 19.02 18.63 23.35 17.78 25.67 18.46

 SD 4.81 5.19 3.53 2.59 1.83 1.67

 20 Avg. 𝐺𝐴𝑃 16.57 16.83 21.18 16.11 23.25 16.61

 SD 3.76 3.90 2.40 3.16 2.20 1.85

50 5 Avg. 𝐺𝐴𝑃 4.79 0.56 28.34 21.47 32.04 22.27

 SD 6.14 2.48 7.22 2.91 5.47 3.00

 10 Avg. 𝐺𝐴𝑃 0.05 0 28.50 22.79 29.94 21.42

 SD 0.20 0 4.82 3.96 2.81 2.18

 15 Avg. 𝐺𝐴𝑃 0 0.82 26.30 22.29 28.46 21.14

 SD 0 2.35 3.67 2.74 2.68 3.22

 20 Avg. 𝐺𝐴𝑃 0 0.05 26.22 21.98 24.92 18.54

 SD 0 0.22 4.10 3.96 2.13 2.90

5. CONCLUSIONS

In this study, the parallel BPM problem with various constraints when minimizing makespan is investigated. This problem is

motivated by the wafer fabrication procedure in the semiconductor industry. A MIP model is first proposed to obtain optimal

solutions for our problem. To deal with the large-scale problem, a DH algorithm, which includes two phases - batch formation

and batch scheduling, is proposed to obtain approximation solutions within a reasonable run time. A new two-dimensional

saving function is introduced to quantify the saving space of time and capacity, which is a basis for batch formation in the

DH algorithm. A comprehensive set of randomly generated small- and large-size instances are used to evaluate the

performance of the proposed algorithm. The computational experiments show that the proposed heuristic performs well for

small-size problems and can deal with large-scale problems efficiently within a reasonable computational time. For small-

size problems, the percentage of achieving optimal solutions by the DH is 94.17%. The high percentage indicates that the

proposed heuristic is very good in solving small-size problems. The DH heuristic requires only 0.02 seconds on average to

solve an instance, while the average run time of the MIP model is about 326.27 seconds. The experiment for the large-scale

problems is designed to compare our proposed heuristic to the existing heuristic LFLT proposed by Koh et al. (2004).

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem A Decomposition-based Heuristic

364

Computational results indicate that the average 𝐺𝐴𝑃 of LFLT varies from 0 to 32.04%, while the average 𝐺𝐴𝑃 of DH varies

from 0 to 22.79%. It shows that the DH heuristic is efficient and outperforms the heuristic LFLT. In future research, further

study can be directed to problems in job shop or flow shop environments. Other criteria, such as the total completion time or

due date-related performance measures, are also worth studying.

Moreover, in order to illustrate the application of the proposed algorithm as interesting future research, it is worthwhile

to further study the solution quality while the studied problem is involved with more practical assumptions, such as machine

breakdowns, resource constrains and setup time constraints. Besides, since our proposed algorithm is a deterministic heuristic

and only one solution is found for each instance, a local search algorithm can be applied to explore the neighborhood of the

solution found by our proposed heuristic and to further improve the solution quality for large-size instances. Namely, it is

worthwhile to treat the solution found by our heuristic as an initial solution when applying a local search strategy.

REFERENCES

Almeder, C. and L. Mönch. (2011). Metaheuristics for Scheduling Jobs with Incompatible Families on Parallel Batching

Machines. Journal of the Operational Research Society, 62(12): 2083–96.

Arroyo, J. E C. and Leung, J. Y. T. (2017a). An Effective Iterated Greedy Algorithm for Scheduling Unrelated Parallel Batch

Machines with Non-Identical Capacities and Unequal Ready Times. Computers and Industrial Engineering, 105: 84–100.

Arroyo, J. E C. and Leung, J. Y. T. (2017b). Scheduling Unrelated Parallel Batch Processing Machines with Non-Identical

Job Sizes and Unequal Ready Times. Computers and Operations Research, 78: 117–28.

Balasubramanian, H., Mönch, L., Fowler, J. and Pfund, M. (2004). Genetic Algorithm Based Scheduling of Parallel Batch

Machines with Incompatible Job Families to Minimize Total Weighted Tardiness.International Journal of Production

Research, 42(8): 1621–38.

Bard, J. F. and Rojanasoonthon, S. (2006). A Branch-and-Price Algorithm for Parallel Machine Scheduling with Time

Windows and Job Priorities. Naval Research Logistics, 53(1): 24–44.

Bilyk, A., Mönch, L. and Almeder, C. (2014). Scheduling Jobs with Ready Times and Precedence Constraints on Parallel

Batch Machines Using Metaheuristics. Computers and Industrial Engineering, 78: 175–85.

Brucker, P. and Kravchenko, S. A. (2008). Scheduling Jobs with Equal Processing Times and Time Windows on Identical

Parallel Machines. Journal of Scheduling, 11(4): 229–37.

Çatay, B. (2010). A New Saving-Based Ant Algorithm for the Vehicle Routing Problem with Simultaneous Pickup and

Delivery. Expert Systems with Applications, 37(10): 6809–17.

Chang, P. Y., Damodaran, P. and Melouk, S. (2004). Minimizing Makespan on Parallel Batch Processing Machines.

International Journal of Production Research, 42(19): 4211–20.

Chen, H., Du, B. and Huang, G. Q. (2011). Scheduling a Batch Processing Machine with Non-Identical Job Sizes: A

Clustering Perspective. International Journal of Production Research, 49(19): 5755–78.

Cheng, B., Cai, J., Yang, S. and Hu, X. (2014). Algorithms for Scheduling Incompatible Job Families on Single Batching

Machine with Limited Capacity. Computers and Industrial Engineering, 75(1):116–20.

Chiang, T. C., Cheng, H. C. and Fu, L. C. (2010). A Memetic Algorithm for Minimizing Total Weighted Tardiness on Parallel

Batch Machines with Incompatible Job Families and Dynamic Job Arrival. Computers and Operations Research, 37(12):

2257–69.

Chung, S. H., Tai, Y. T. and Pearn, W. L. (2009). Minimising Makespan on Parallel Batch Processing Machines with Non-

Identical Ready Time and Arbitrary Job Sizes. International Journal of Production Research, 47(18): 5109–28.

Clarke, G. and Wright, J. W. (1964). Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Operations

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem A Decomposition-based Heuristic

365

Research, 12(4): 568–81.

Damodaran, P. and Vélez-Gallego, M. C. (2012). A Simulated Annealing Algorithm to Minimize Makespan of Parallel Batch

Processing Machines with Unequal Job Ready Times. Expert Systems with Applications, 39(1): 1451–58.

Graham, R. L., Lawler, E. L., Lenstra, J. K. and Kan, A. R. (1979). Optimization and Approximation in Deterministic

Sequencing and Scheduling: A Survey. Annals of Discrete Mathematics, 5: 287–326.

Hashemi, S., Salari, M. and Ranjbar, M. (2020). Multi-Trip Open Vehicle Routing Problem with Time Windows: A Case

Study. International Journal of Industrial Engineering : Theory Applications and Practice, 27(1): 37–57.

Hungerländer, P. and Truden, C. (2018). Efficient and Easy-to-Implement Mixed-Integer Linear Programs for the Traveling

Salesperson Problem with Time Windows. Transportation Research Procedia, 30: 157–66.

Jia, Z. H. and Leung, J. Y. T. (2014). An Improved Meta-Heuristic for Makespan Minimization of a Single Batch Machine

with Non-Identical Job Sizes. Computers and Operations Research, 46: 49–58.

Jia, Z. H., Li, K. and Leung, J. Y. T. (2015). Effective Heuristic for Makespan Minimization in Parallel Batch Machines with

Non-Identical Capacities. International Journal of Production Economics, 169: 1–10.

Jia, Z. H., Wang, C. and Leung, J. Y. T. (2016). An ACO Algorithm for Makespan Minimization in Parallel Batch Machines

with Non-Identical Job Sizes and Incompatible Job Families. Applied Soft Computing Journal, 38: 395–404.

Kashan, A. H., Karimi, B. and Jenabi, M. (2008). A Hybrid Genetic Heuristic for Scheduling Parallel Batch Processing

Machines with Arbitrary Job Sizes. Computers and Operations Research, 35(4): 1084–98.

Koh, S. G., Koo, P. H., Ha, J. W. and Lee, W. S. (2004). Scheduling Parallel Batch Processing Machines with Arbitrary Job

Sizes and Incompatible Job Families. International Journal of Production Research, 42(19): 4091–4107.

Lee, J. Y., Kim, Y. D. and Lee, T. E. (2018). Minimizing Total Tardiness On Parallel Machines Subject To Flexible

Maintenance. International Journal of Industrial Engineering : Theory Applications and Practice, 25(4): 472–89.

Li, Y., Lim, A. and Rodrigues, B. (2004). Crossdocking - JIT Scheduling with Time Windows. Journal of the Operational

Research Society, 55(12): 1342–51.

Malve, S. and Uzsoy, R. (2007). A Genetic Algorithm for Minimizing Maximum Lateness on Parallel Identical Batch

Processing Machines with Dynamic Job Arrivals and Incompatible Job Families. Computers and Operations Research,

34(10): 3016–28.

Mathirajan, M. and Sivakumar, A. I. (2006). A Literature Review, Classification and Simple Meta-Analysis on Scheduling

of Batch Processors in Semiconductor. International Journal of Advanced Manufacturing Technology, 29: 990–1001.

Mönch, L., Balasubramanian, H., Fowler, J. W. and Pfund, M. E. (2005). Heuristic Scheduling of Jobs on Parallel Batch

Machines with Incompatible Job Families and Unequal Ready Times. Computers and Operations Research, 32(11): 2731–

50.

Mönch, L., Fowler, J. W. and Mason, S. J. (2012). Production Planning and Control for Semiconductor Wafer Fabrication

Facilities: Modeling, Analysis, and Systems. Vol. 52. Springer Science & Business Media.

Ozturk, O., Begen, M. A. and Zaric, G. S. (2014). A Branch and Bound Based Heuristic for Makespan Minimization of

Washing Operations in Hospital Sterilization Services. European Journal of Operational Research, 239(1): 214–26.

Pamosoaji, A. K., Dewa, P. K. and Krisnanta, J. V. (2019). Proposed Modified Clarke-Wright Saving Algorithm for

Capacitated Vehicle Routing Problem. International Journal of Industrial Engineering and Engineering Management, 1(1):

9.

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem A Decomposition-based Heuristic

366

Reichelt, D. and Mönch, L. (2006). Multiobjective Scheduling of Jobs with Incompatible Families on Parallel Batch Machines.

In European Conference on Evolutionary Computation in Combinatorial Optimization, 209–21.

Segerstedt, A. (2014). A Simple Heuristic for Vehicle Routing-A Variant of Clarke and Wright’s Saving Method.

International Journal of Production Economics, 157(1): 74–79.

Shirvani, N., Ruiz, R. and Shadrokh, S. (2014). Cyclic Scheduling of Perishable Products in Parallel Machine with Release

Dates, Due Dates and Deadlines. International Journal of Production Economics, 156:1–12.

Tarhini, A., Danach, K. and Harfouche, A. (2020). Swarm Intelligence-Based Hyper-Heuristic for the Vehicle Routing

Problem with Prioritized Customers. Annals of Operations Research, 1–22.

Uzsoy, R. (1995). Scheduling Batch Processing Machines with Incompatible Job Families. International Journal of

Production Research, 33(10): 2685–2708.

Zhou, S., Chen, H., Xu, R., and Li, X. (2014). Minimising Makespan on a Single Batch Processing Machine with Dynamic

Job Arrivals and Non-Identical Job Sizes. International Journal of Production Research, 52(8): 2258–74.

Zhou, S., Xie, J., Du, N. and Pang, Y. (2018). A Random-Keys Genetic Algorithm for Scheduling Unrelated Parallel Batch

Processing Machines with Different Capacities and Arbitrary Job Sizes. Applied Mathematics and Computation, 334: 254–

68.

APPENDIX A - Notations used in MIP model

Indices

𝑖 lot index 𝑖 = 1,… , 𝑁,

𝑗 machine index, 𝑗 = 1,… ,𝑀,

𝑒 recipe index, 𝑒 = 1,… , 𝐸,

𝑏 batch index, 𝑏 = 1,… , 𝐵;

Parameters

𝑝𝑖 processing time of lot 𝑖,
𝑟𝑖 release time of lot 𝑖,
𝑅𝑖 remaining lifetime of lot 𝑖,
𝑠𝑖 size of lot 𝑖,
𝑈𝐵𝑒 batch capacity with recipe 𝑒,

𝑳 a very large positive number,

ℎ𝑖,𝑒 1, if lot 𝑖 uses recipe 𝑒; 0, otherwise;

Decision variables

𝑋𝑗,𝑏,𝑖 1, if lot 𝑖 is assigned to batch 𝑏 on machine 𝑗; 0, otherwise,

𝑌𝑗,𝑏,𝑒 1, if recipe 𝑒 is processed on batch 𝑏 on machine 𝑗; 0, otherwise,

𝑆𝑗,𝑏 start time of batch b on machine 𝑗,

𝐹𝑗,𝑏 finish time of batch b on machine 𝑗,

𝐸𝑗 end time of machine 𝑗,

𝐶𝑚𝑎𝑥 makespan.

APPENDIX B - Additional notations used in DH algorithm:

𝑏, 𝑙, 𝑘, ℎ batch index,

𝑗, 𝑢, 𝑣 machine index,

𝑝𝑏
𝐵 processing time of batch 𝑏,

𝑝𝑖
𝐿 processing time of lot 𝑖,
𝑟𝑒𝑏

𝐵 recipe of batch 𝑏,

𝑟𝑒𝑖
𝐿 recipe of lot 𝑖,

𝑠𝑏
𝐵 size of batch 𝑏,

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem A Decomposition-based Heuristic

367

𝑠𝑖
𝐿 size of lot 𝑖,
𝑟𝑖
𝐿 release time of lot 𝑖,
𝑅𝑖
𝐿 remaining lifetime of lot 𝑖,
𝐸𝑆𝑏

𝐵 earliest start time of batch 𝑏,

𝐿𝑆𝑏
𝐵 latest start time of batch 𝑏,

ℒEST(ℒLST) sorted sequence according to non-decreasing order of batch earliest start time (batch latest start time),

𝑏1
𝐸𝑆𝑇(𝑏1

𝐿𝑆𝑇) first batch in sequence ℒ𝐸𝑆𝑇(ℒLST),

𝑇𝑗
𝐸𝑆𝑇(𝑇𝑗

𝐿𝑆𝑇) available time of machine 𝑗 when applying EST rule (LST rule),

𝑆𝑗
𝐸𝑆𝑇(𝑆𝑗

𝐿𝑆𝑇) batch sequence on machine 𝑗 when applying EST rule (LST rule),

𝐵𝑆𝑏
𝑗
 start time of batch 𝑏 on machine 𝑗,

𝐵𝐶𝑏
𝑗
 completion time of batch 𝑏 on machine 𝑗,

𝑆𝑗 batch sequence on machine 𝑗.

APPENDIX C - Details of the computational results for the large-size instances

Table C. Makespan results of LB, LFLT and DH

𝑀 𝐸 LB
𝑁 = 100

LB
𝑁 = 200

LB
𝑁 = 300

LFLT DH LFLT DH LFLT DH

10 5 1 178 219 208 341 453 413 490 616 564

 2 188 227 222 369 466 429 544 700 652

 3 163 206 196 384 490 460 555 719 672
 4 190 230 225 345 427 400 508 653 599

 5 186 223 215 362 461 419 586 775 701

 6 179 234 215 345 446 413 539 689 646
 7 179 227 210 332 412 396 506 646 601

 8 184 236 221 385 478 446 555 716 659

 9 190 241 235 369 468 431 540 701 626
 10 215 265 249 350 458 428 494 638 607

 11 170 217 203 332 422 395 550 703 653

 12 174 226 212 353 458 435 520 663 600
 13 192 243 222 303 402 366 551 706 628

 14 170 214 205 399 513 483 526 680 634

 15 198 254 247 384 491 460 558 702 634
 16 187 244 229 376 475 443 509 659 609

 17 171 226 209 373 488 459 517 655 611

 18 198 257 233 342 439 406 499 643 600
 19 192 239 212 418 538 483 505 650 602

 20 175 221 208 339 448 408 557 706 661

10 10 1 336 387 354 630 788 747 976 1243 1173
 2 332 397 394 606 737 701 988 1222 1126

 3 316 371 377 586 743 690 960 1208 1122

 4 317 379 347 677 845 793 948 1207 1130
 5 278 334 317 630 784 740 956 1183 1102

 6 328 399 373 619 780 704 905 1133 1051

 7 314 370 344 668 843 797 899 1112 1063
 8 368 413 403 584 766 729 939 1190 1092

 9 339 422 388 649 779 745 899 1160 1083

 10 286 321 309 638 786 715 874 1102 1006
 11 389 453 440 604 747 711 938 1171 1114

 12 295 354 344 625 780 721 952 1205 1122

 13 322 376 363 634 769 719 929 1179 1080
 14 308 368 346 651 805 761 935 1162 1100

 15 320 368 353 572 721 677 940 1181 1126

 16 346 405 407 659 802 741 944 1184 1087
 17 345 402 407 682 830 790 902 1160 1065

 18 324 382 363 656 841 775 921 1192 1088

 19 309 359 346 680 849 779 947 1177 1093
 20 316 399 380 643 786 767 954 1205 1101

10 15 1 578 633 622 962 1113 1057 1392 1675 1578
 2 539 616 573 970 1173 1132 1330 1644 1546

 3 572 678 633 1011 1221 1165 1325 1640 1533

 4 579 650 618 987 1202 1138 1253 1530 1464
 5 577 670 645 923 1145 1046 1419 1703 1604

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem A Decomposition-based Heuristic

368

 6 527 605 590 954 1142 1087 1363 1644 1556
 7 543 609 592 963 1174 1098 1251 1563 1429

 8 578 604 588 912 1057 1028 1317 1613 1537

 9 555 638 596 847 1011 944 1373 1673 1596
 10 580 675 657 948 1111 1100 1388 1727 1624

 11 600 689 677 925 1098 1047 1379 1675 1578

 12 496 595 553 974 1167 1111 1291 1621 1514
 13 526 621 586 981 1169 1119 1367 1742 1592

 14 601 687 672 916 1137 1045 1291 1615 1509

 15 568 647 621 947 1142 1095 1344 1688 1584
 16 517 616 564 931 1135 1035 1389 1739 1606

 17 600 667 655 907 1096 1022 1363 1670 1567

 18 511 570 541 931 1099 1033 1327 1664 1555
 19 517 583 572 967 1123 1033 1387 1744 1595

 20 596 673 667 1017 1231 1129 1299 1591 1522

10 20 1 668 767 760 1189 1396 1372 1788 2183 2030
 2 703 743 734 1303 1582 1506 1824 2138 2066

 3 637 735 713 1208 1457 1396 1629 2039 1908

 4 594 675 677 1151 1332 1289 1856 2163 2074
 5 730 761 740 1267 1549 1414 1774 2134 2008

 6 661 711 713 1114 1359 1243 1749 2158 2029

 7 680 747 720 1263 1521 1430 1830 2256 2048
 8 770 804 797 1182 1383 1320 1653 2033 1878

 9 664 723 701 1306 1514 1384 1728 2079 1940

 10 661 778 706 1238 1454 1381 1773 2169 2025
 11 668 704 692 1269 1486 1371 1719 2102 2003

 12 699 738 708 1318 1503 1468 1720 2082 1997
 13 727 769 746 1283 1489 1452 1803 2215 2047

 14 660 747 700 1119 1386 1271 1876 2269 2157

 15 614 680 636 1288 1522 1464 1765 2154 2041
 16 609 661 666 1222 1404 1400 1729 2138 2034

 17 733 780 757 1158 1391 1333 1697 2031 1926

 18 694 734 740 1153 1344 1306 1812 2181 2089
 19 651 697 686 1214 1451 1392 1860 2241 2102

 20 742 796 778 1226 1446 1376 1876 2257 2073

30 5 1 70 83 83 136 172 162 170 231 214

 2 80 97 92 109 144 134 165 215 191
 3 66 83 88 121 152 145 167 219 202

 4 68 90 94 126 158 152 161 212 201

 5 70 86 80 129 174 161 200 261 241
 6 61 76 76 119 156 147 191 252 232

 7 66 85 83 113 152 136 184 240 233

 8 71 85 77 127 167 152 196 254 241
 9 73 84 84 117 156 142 190 255 226

 10 68 81 80 129 167 156 186 243 228

 11 64 81 81 116 148 140 185 240 229
 12 67 76 82 133 176 164 170 226 208

 13 69 87 85 120 144 140 186 244 231

 14 61 76 76 127 160 152 185 227 213
 15 81 94 94 126 162 156 165 218 199

 16 68 84 84 130 174 157 171 225 208
 17 69 81 75 131 175 168 182 239 223

 18 65 82 82 112 149 135 179 233 217

 19 72 88 88 118 149 139 169 224 202

 20 68 76 80 126 174 160 183 243 226

30 10 1 113 143 143 188 245 236 300 396 367

 2 113 138 138 194 240 235 312 389 361
 3 110 138 138 205 253 243 311 392 370

 4 113 140 137 205 254 248 323 414 391

 5 123 157 150 205 273 253 299 383 377
 6 119 142 136 221 287 276 292 376 344

 7 109 138 137 211 271 253 303 391 357

 8 114 135 139 210 266 246 303 389 358
 9 110 139 139 216 281 267 327 427 392

 10 132 166 166 201 246 231 319 403 381

 11 114 148 141 201 249 243 295 377 347
 12 109 126 131 228 292 278 298 388 340

 13 118 140 140 222 284 270 293 376 367

 14 125 148 148 213 270 253 310 397 351
 15 133 158 154 235 293 285 285 360 340

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem A Decomposition-based Heuristic

369

 16 104 130 130 218 285 270 288 371 347
 17 105 134 141 199 255 244 309 399 367

 18 121 146 153 206 261 252 305 388 364

 19 129 166 152 220 279 268 309 401 365
 20 121 145 139 208 270 252 302 379 351

30 15 1 184 211 218 319 385 366 455 579 540

 2 205 246 227 315 386 360 462 574 548
 3 192 232 216 318 382 364 441 550 536

 4 167 208 207 315 384 374 450 562 521

 5 184 215 215 297 370 354 450 556 529
 6 188 214 212 338 406 392 461 581 534

 7 188 230 228 318 407 380 466 580 553

 8 210 252 264 338 412 393 457 570 547
 9 172 204 213 311 396 369 458 589 555

 10 182 214 210 312 391 376 445 559 534

 11 183 217 222 345 407 388 452 580 538
 12 175 232 206 315 390 369 437 536 521

 13 204 227 242 335 399 401 427 534 503

 14 196 220 217 299 379 356 455 589 541
 15 202 238 231 311 391 359 447 562 517

 16 196 243 236 325 425 393 437 549 523

 17 187 223 245 321 386 380 461 568 542
 18 186 219 221 327 411 400 430 537 501

 19 181 209 213 326 410 384 424 538 507

 20 185 226 223 325 386 390 448 571 527
30 20 1 239 279 293 417 501 480 633 784 759

 2 221 270 263 409 480 461 593 735 695
 3 214 257 243 426 508 497 579 713 670

 4 241 274 277 417 506 483 574 732 673

 5 228 278 266 448 531 495 616 761 714
 6 211 237 239 422 523 497 599 718 694

 7 239 282 280 429 536 499 634 774 735

 8 222 272 262 404 498 486 567 708 669
 9 223 258 257 365 438 431 562 697 651

 10 231 262 277 390 461 426 582 721 674

 11 220 259 259 394 495 476 608 757 736
 12 224 246 245 385 467 454 582 708 672

 13 211 243 260 384 466 450 619 740 715

 14 256 306 284 426 517 502 618 769 724
 15 268 319 314 425 513 485 616 741 695

 16 239 281 269 468 555 526 607 742 698

 17 249 281 285 431 511 495 600 769 713
 18 229 272 279 395 491 461 585 721 688

 19 251 281 307 442 543 517 599 730 696

 20 210 236 245 392 478 474 596 729 686

50 5 1 59 59 59 76 107 98 107 145 132
 2 56 65 56 79 106 97 109 137 135

 3 55 58 55 82 95 100 108 141 129

 4 57 57 57 76 108 92 103 141 125
 5 60 60 60 73 88 89 101 136 123

 6 54 58 54 77 104 92 112 150 135
 7 54 54 54 86 106 98 118 155 143

 8 59 59 59 86 111 106 110 146 142

 9 58 58 58 78 98 94 110 145 135

 10 54 58 54 70 96 86 116 148 142

 11 53 55 53 78 105 94 109 144 132

 12 52 52 52 78 103 93 106 144 132
 13 51 51 51 74 95 91 98 142 121

 14 52 58 52 78 102 95 115 143 142

 15 55 55 55 69 83 83 110 147 136
 16 52 57 52 83 104 99 111 148 135

 17 58 58 58 85 105 102 114 149 138

 18 50 58 50 73 89 88 119 140 139
 19 55 56 55 80 98 98 104 140 121

 20 54 63 60 78 98 98 112 149 143

50 10 1 109 109 109 131 169 157 197 250 232
 2 110 110 110 126 167 168 191 244 231

 3 108 108 108 135 181 165 172 224 208

 4 100 100 100 138 176 168 185 243 223
 5 103 103 103 126 169 168 202 258 247

Nguyen and Sheen A Decomposition-Based Heuristic Parallel Batch Processing Problem A Decomposition-based Heuristic

370

 6 110 111 110 127 148 155 175 225 223
 7 107 107 107 128 174 157 191 250 233

 8 105 105 105 135 170 167 182 239 220

 9 108 108 108 137 177 167 203 259 243
 10 102 102 102 126 162 150 179 232 219

 11 108 108 108 129 164 156 188 252 229

 12 108 108 108 123 154 148 179 238 218
 13 103 103 103 126 158 154 186 238 221

 14 105 105 105 128 155 150 191 255 234

 15 101 101 101 128 168 154 179 223 215
 16 103 103 103 137 176 168 185 232 229

 17 108 108 108 132 175 163 182 238 225

 18 108 108 108 138 169 169 183 239 221
 19 100 100 100 128 168 157 179 239 211

 20 110 110 110 126 166 156 182 243 223

50 15 1 168 168 168 203 258 247 274 368 353
 2 164 164 164 194 250 231 268 340 309

 3 170 170 170 211 267 254 269 345 319

 4 169 169 169 183 223 223 263 339 322
 5 167 167 167 193 246 241 263 334 320

 6 166 166 166 176 213 212 263 353 327

 7 168 168 168 178 214 214 279 362 346
 8 167 167 167 195 253 239 282 360 327

 9 162 162 162 182 241 225 260 327 313

 10 168 168 168 194 238 239 271 356 325
 11 167 167 167 197 252 243 268 335 321

 12 164 164 168 218 262 260 283 359 336
 13 164 164 180 188 244 229 270 348 335

 14 168 168 168 182 237 236 260 332 314

 15 168 168 168 197 255 241 263 338 321
 16 168 168 175 190 243 241 304 378 366

 17 166 166 166 207 260 250 283 356 352

 18 170 170 170 181 222 214 269 352 319
 19 166 166 166 187 241 233 273 349 324

 20 166 166 166 204 256 247 239 309 296

50 20 1 209 209 209 261 326 296 351 433 414
 2 202 202 202 262 322 315 354 438 426

 3 200 200 200 244 309 289 348 423 404

 4 209 209 209 248 317 309 360 450 426
 5 208 208 208 209 257 264 367 456 417

 6 207 207 209 239 314 295 353 434 401

 7 205 205 205 290 342 334 331 420 400
 8 210 210 210 251 317 313 346 421 394

 9 210 210 210 248 317 307 350 445 425

 10 209 209 209 240 310 281 382 489 452
 11 200 200 200 216 284 271 362 443 428

 12 206 206 206 251 295 295 357 450 431

 13 208 208 208 252 325 312 339 427 408
 14 208 208 208 261 334 326 372 468 460

 15 207 207 207 268 323 325 368 471 444

 16 209 209 209 253 316 312 343 434 422
 17 209 209 209 256 326 316 354 449 420

 18 210 210 210 243 317 312 354 431 414

 19 207 207 207 225 294 280 337 426 393

 20 205 205 205 258 327 309 372 462 437

