
International Journal of Industrial Engineering, 30(3), 852-875, 2023 

 

 

DOI: 10.23055/ijietap.2023.30.3.8989 ISSN 1943-670X © INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING 

 

A GENETIC ALGORITHM FOR THE INTEGRATED WAREHOUSE 

LOCATION, ALLOCATION AND VEHICLE ROUTING PROBLEM IN A 

POOLED TRANSPORTATION SYSTEM 
 

Mehdi Mrad*, Khaled Bamatraf, Mohammed Alkahtani, and Lotfi Hidri 

 

Department of Industrial Engineering 

King Saud University 

Riyadh, Kingdom of Saudi Arabia 
*Corresponding author’s e-mail: mmrad@ksu.edu.sa 

 

In this paper, we address the integrated location, allocation, and routing problem in the framework of a pooled transportation 

system. We assume that many enterprises with familiar customers aim to share their logistical means. Two collaborative 

scenarios are proposed and solved. A genetic algorithm based on Clarke and Wright’s savings heuristic is proposed to solve 

the different considered scenarios. A comparison is established between collaborative and noncollaborative scenarios to 

assess the impact of the proposed pooled transportation system. The obtained computational results indicate that the 

collaborative scenarios outperform the noncollaborative scenario. The total annual transportation cost is reduced by 

approximately 28% to 54% in the collaborative scenarios. Furthermore, the collaborative scenarios may reduce the number 

of required vehicles and increase the average fill rate of the used vehicles. It is worth noting that the proposed genetic 

algorithm solves efficiently adapted benchmark instances from the literature. 
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1. INTRODUCTION 
 

Global competition has increased urban traffic congestion, and increased carbon dioxide (CO2) emissions have pressured 

companies to look for efficient transportation methods with low costs, minimal environmental impacts, and low turnaround 

times. However, the increased delivery frequency, which is supposed to improve customer service and reduce inventory costs, 

leads to low vehicle utilization (i.e., incomplete loading), which increases the transportation costs incurred by fuel and road 

taxes (Lozano et al., 2013; Pomponi et al., 2015). This consequently increases CO2 emissions and traffic congestion. One of 

the solutions proposed by researchers to overcome these challenges is collaborative logistics. Collaboration occurs when two 

or more entities form a coalition and exchange or share physical and/or informational resources to make decisions or generate 

benefits from activities that they cannot do individually (Audy et al., 2012). Simatupang and Sridharan (2002) defined 

a collaborative supply chain as a scenario when “two or more independent companies work jointly to plan and execute supply 

chain operations with the greatest success than when acting in isolation”. Successful cooperation between partners requires 

commitment, trust, information sharing (Singh and Power, 2009), and a fair allocation of benefits (Hacardiaux and Tancrez, 

2018). 

The load factor is an index of the utilization of the available cargo capacity; according to the European Environment 

Agency, on average, cargo trucks are only 50% loaded (Abate, 2014). This shows significant room for improvement. 

Nevertheless, increasing the load factor would reduce the volume of freight traffic, thus reducing transportation costs and 

CO2 emissions. 

Adopting a pooled transportation system between companies with similar products and joint customers is an attractive 

solution for increasing the load factors of cargo trucks. A pooled transportation system involves cooperation between 

independent supply chains to build a shared supply chain network while sharing their available transportation and 

warehousing resources. Pooled logistics impose the sharing of depots and vehicles. Thus, this paradigm may yield decreased 

warehousing and transportation costs compared to classic logistics. Although pooled logistics can increase vehicle utilization 

and reduce CO2 emissions, developing a pooled network is complex. It must include the locations of shared facilities, the 

assignment of each company to these facilities, and the routing of the distribution vehicles. 

Theoretically, the pooled transportation problem is closely related to the classic vehicle routing problem (VRP), in 

which the total cost of a vehicle departing from a company’s depot, delivering the required quantities to its customers, and 
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then returning to the depot is minimized. However, unfortunately, the classic VRP is a nondeterministic polynomial (NP)-

hard problem; i.e., no known polynomial-time algorithms exist to solve it. 

Indeed, the VRP generalizes the traveling salesman problem (TSP) and the bin packing problem, which -are also known 

as NP-hard (Garey and Johnson, 1979). As cargo vehicles are often underutilized, companies intervening in the same 

distribution area and selling compatible products may find it profitable to share their distribution resources and depots to 

optimize their distribution networks. 

This work, therefore, aims to simultaneously solve the warehouse location problem, the allocation of companies to the 

selected depots, and the routing problem. The objective is to minimize the total transportation cost from collaborative 

companies to the depots and from depots to the customers. In this paper, two different collaborative scenarios are proposed. 

A genetic algorithm (GA) is then developed and modified to solve each corresponding scenario. The proposed GA uses 

Clarke and Wright’s savings (CWS) algorithm to assess the fitness of each chromosome. Finally, the performance of the GA 

is tested on modified benchmark instances from the literature concerning the VRP. 

The remainder of this paper is organized as follows. First, a literature review is presented in Section 2. Then, a 

description of the problem is detailed in Section 3. After that, the methods used to solve the proposed problem are described 

in Section 4. The obtained results are then displayed and discussed in Section 5. Finally, conclusions and future research 

directions are provided in Section 6. 

 

2. LITERATURE REVIEW 

 

A collaborative supply chain is a business partnership between two or more companies to achieve common goals. Depending 

on its structure, it is classified as either vertical, horizontal, or lateral collaboration (Simatupang and Sridharan, 2002). 

- Vertical collaboration: This type of collaboration occurs between actors or partners working at different levels of the 

supply network (Cruijssen, 2006). Some examples of the applications of vertical collaboration are related to the 

inventory routing problem (Archetti et al., 2007, Savelsbergh and Song, 2008) and the production routing problem 

(Adulyasak et al., 2015). 

- Horizontal collaboration: The European Union (Union, 2001) defined horizontal collaboration as "concerted practices 

among companies operating at the same level(s) in the market." According to Simatupang and Sridharan (2002) and 

Moutaoukil, Derrouiche et al. (2012), horizontal collaboration involves the collaboration of two or more competing or 

unrelated organizations at the same level (e.g., between suppliers, manufacturers, and distributors) in a supply network 

to share their information or resources. The goal is to reduce costs and/or improve services (Pérez‐Bernabeu et al., 

2015). Horizontal collaboration has been applied to the collaborative VRP of carrier collaboration and the lane-covering 

problem of shipper collaboration (Danloup et al., 2013). 

- Lateral collaboration: This paradigm combines vertical and horizontal collaboration to increase flexibility (Simatupang 

and Sridharan, 2002). 

The collaboration between partners in a supply chain can take place at different planning levels, as follows (Gonzalez-

Feliu and Morana, 2011). 

- Transactional collaboration: This level involves the standardization and coordination of administrative operations and 

exchange techniques. 

- Informational collaboration: This level relates to a mutual exchange of information. Examples of this type of 

collaboration include sales, stock levels, and delivery dates. 

- Decisional collaboration: This level concerns collaboration at different planning horizons, namely: 

• Operational planning: concerned with daily operations that are shared or coordinated, such as freight 

transportation. 

• Tactical planning: also called middle-term planning, which involves several decisions such as sales forecasts, 

shipping operations decisions, quality control, and production management. Trust between the collaborators is 

essential at this stage. 

• Strategic planning: related to long-term planning. Decisions at this level include network design, facility location, 

finance, and production planning. 

Habibi et al. (2018) classified decisions at each level regarding collaboration in the supply chain as follows. 

- Operational planning involves delivery scheduling, routing, and vehicle assignment. 

- Tactical planning focuses on determining inventory levels, delivery frequencies, and cost and benefit allocation. 

- Strategic planning focuses on defining the number and locations of facilities, the number of required vehicles, 

decisions on whether to enter a coalition and partner selection. 

Researchers have identified two types of horizontal collaboration: shipper and carrier collaboration. Shipper 

collaboration considers multiple shippers and a single carrier and is realized by consolidating the shippers' shipments to be 

offered to the carrier. Carrier collaboration considers how to provide opportunities for less-than-truckload (LTL) carriers to 
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reduce the costs associated with fleet operation, decrease lead times, increase asset utilization, and enhance overall service 

levels (Li et al., 2016). 

Verdonck et al. (2013) classified horizontal carrier collaboration into two main approaches: sharing customer orders 

and sharing vehicle capacities. Sharing customer orders concerns all states where the collaborating carriers share, combine, 

or exchange customer orders or requests, but each carrier's fleet remains unchanged (Fernández et al., 2018). In this approach, 

carriers may enjoy increased capacity utilization, improve their asset repositioning capabilities, and reduce the total incurred 

transportation costs due to enhanced transportation planning. In addition, when sharing vehicle capacities, capital investments 

may be divided among partners, and vehicle utilization may be improved. Therefore, capacity sharing is a suitable alternative 

to order sharing, especially in environments where private order information cannot be shared among collaborating partners. 

Many researchers have investigated carrier collaboration. For example, He et al. (2018) studied collaboration between 

carriers with some of their orders to reduce the influences of shippers' stochastic demands and transportation costs. Verdonck 

et al. (2016) discussed the sharing of distribution centers (DCs) with collaborating organizations in their presented approach 

for horizontal carrier collaboration. They focused on deciding which DCs to open and how to allocate the quantity of product 

flowing to each open DC to minimize the logistics cost between the partnering companies. The authors classified this problem 

as a facility location problem under cooperation and concluded that DC sharing may reduce costs by up to 21.6%. 

Furthermore, Ftouh et al. (2020) reviewed structured classification types for carrier collaboration problems. 

Verdonck et al. (2013) presented a review of solution methods based on two operation planning approaches: order 

sharing and capacity sharing. They focused on the operational level of horizontal collaboration between carriers. Amer and 

Eltawil (2015) performed a literature review on quantitative models for the successful implementation of horizontal 

collaboration. They classified the literature into conceptual, empirical, and mathematical research. Regarding the empirical 

research, the authors listed empirical studies on horizontal collaboration in supply chain networks by giving each study's 

location, sector, purpose, and methodology. For mathematical research, the authors presented research related to mathematical 

approaches with different types of decisions and the importance of horizontal collaboration. Then, the authors proposed a 

framework for integrating sustainability into a collaborative supply chain strategy for meeting customer and stakeholder 

expectations while focusing on long-term environmental effects. Gansterer and Hartl (2017) classified the literature on the 

collaborative VRP into centralized and decentralized collaborative planning approaches with and without auctions. The 

central decision-maker should complete the relevant information in centralized collaborative planning. 

In contrast, decentralized collaborative planning appears when the decision-maker does not have complete relevant 

information. Chen et al. (2017) conducted a systematic literature review and a quantitative bibliometric analysis on supply 

chain collaboration for sustainability. The review revealed trends in supply chain collaboration. One trend shows that research 

has moved from upstream collaboration to combining upstream and downstream collaboration. Another trend is that research 

has broadened to include other elements for collaboration, such as relationships and shared responsibilities. The third trend 

shows increasing attention to economic and environmental issues. However, the authors reported that there is a lack of 

consideration regarding the social issues of sustainability. Basso et al. (2019) conducted a survey on practical issues related 

to implementing horizontal collaboration. Ferrell et al. (2019) reviewed existing horizontal collaboration research. Pan et al. 

(2019) performed an extensive review of horizontal collaborative transport methods and classified the previous studies 

according to their horizontal collaborative transport solutions and implementation issues. Gansterer and Hartl (2020) retained 

the classification of their previous literature review published in 2017. Nevertheless, they focused on recent findings, 

identified research gaps, and reported more than 40 relevant articles published in the last three years alone. 

Independent of the classification of collaborative supply chains, many approaches have been used to enhance their 

performance indicators over those of noncollaborative supply chains. Specifically, heuristic and simulation approaches have 

been deployed. Moutaoukil et al. (2012) performed a large-scale revision and introduced a conceptual framework for 

implementing a pooling supply chain as a horizontal collaborative logistics strategy. Furthermore, the same authors of this 

latest paper mentioned that logistic systems must satisfy the economic, ecological, and societal levels of sustainable 

development (Moutaoukil et al., 2013). Therefore, to address these three levels of sustainable development, a simulation 

approach with different scenarios was developed to reduce CO2 emissions in the framework of a pooled logistic system. 

Ferdinand, Kim et al. (2014) proposed a GA for a collaborative service network in which one service center is operated and 

shared by companies with low demand. Saif-Eddine et al. (2019) proposed an improved GA for the integrated inventory, 

location and routing problem and studied the effect of vehicle capacity on the total supply chain cost by solving two instances 

with 10 and 30 customers. Ouhader and Elkyal (2016) studied a model for a pooled distribution supply chain (SC). They 

developed a multisourcing and multiproduct 2E-LRP in which routes can end at different depots from the starting depot. A 

mixed-integer linear model was proposed for the problem. The authors focused on a single objective, optimizing the cost, 

and then evaluated other metrics, such as the carbon emission rate. Ouhader and El Kyal (2017) proposed a bi-objective 

mathematical model to minimize total transportation costs and CO2 emissions in a horizontal collaborative supply chain 

framework. The authors simultaneously considered facility location and vehicle routing decisions in their model. Another 

study performed by (Ouhader, 2020) adopted a multiobjective approach that focused on the balance between the economic 
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and environmental impacts resulting from adopting horizontal collaboration among shippers. Nataraj et al. (2019) proposed 

a metaheuristic algorithm for the location routing problem in different collaborative scenarios. (Zouari, 2019) proposed seven 

pooling scenarios between three companies and evaluated each based on its transportation cost, greenhouse gas emissions, 

congestion, use of resources, and delivery times. Quintero‐Araujo et al. (2019) proposed a hybrid metaheuristic algorithm for 

integrated facility location and routing decisions. Three scenarios were solved: noncooperative, semi-cooperative, and fully 

cooperative situations. These scenarios were evaluated based on two aspects. The first aspect was the total cost, which 

comprises the opening cost of the depot, vehicle costs and routing costs. The second aspect concerned CO2 emissions. Wang, 

Yuan et al. (2020) proposed a decomposition optimization method to solve a collaborative two-echelon multicenter VRP 

based on a state–space–time (CTMCVRP-SST) network. Achamrah et al. (2020) proposed two simulation models to evaluate 

the advantages and disadvantages of sharing pallets in a collaborative supply chain. The first model was a noncollaborative 

supply chain in which each producer managed its pallets. In contrast, the second model was a collaborative supply chain in 

which producers shared empty pallets. The results showed that collaboration between producers could reduce transportation 

and inventory costs. Kao et al. (2021) proposed a two-stage model including decisions about supply chain design and virtual 

machine allocation in cloud computing environments. The objective of the first level is to minimize the total cost, carbon 

emissions, and transportation lead time. The second level aims to minimize the physical machines' energy consumption and 

power waste. 

As reported in many research studies, the implementation of collaborative supply chains demonstrates a significant 

benefit. Cruijssen (2006) showed that using more flexible and developed logistical strategies is more efficient than traditional 

strategies for helping transportation sectors achieve their economic and environmental goals. Xu et al. (2012) showed that 

supply chain pooling can result in reductions in both transportation costs and carbon emissions and that an increase in the 

carbon tax rate gives enterprises more incentive to implement such a pooling scheme. Pan et al. (2014) applied the pooling 

concept to a collection of small and medium-sized Western French food suppliers serving the same retail chain. They 

demonstrated the efficiency of pooling through a comparison between the existing transport organization scheme and various 

pooling scenarios. The computational results of Ouhader and El Kyal (2018) showed that a collaborative approach could 

reduce transportation costs, the number of vehicles used, and CO2 emissions and indirectly minimize both nuisance and traffic 

congestion levels in cities. Mangina et al. (2019) stated that pooling could increase efficiency and reduce road freight transport 

emissions. 

A list of the most important published papers about horizontal collaboration is presented in Table 1. The proposed 

methodology and the type of decision level (strategic, tactical, and/or operational) of each paper are specified in this table. 

 

Table 1. Analysis of Research on Horizontal Collaboration and Pooled Logistics 

 

Author/Year Research Focus Methodology 

Decision 

Level 

S
tr

at
eg

ic
 

T
ac

ti
ca

l 

O
p

er
at

io
n

al
 

Ergun et al., 2007 Truckload shipper collaboration. Greedy heuristic   X 

Krajewska et al., 

2008 

Studying cooperation among freight carriers to share 

requests in a pickup and delivery problem with a time 

window and analyzing the profit margin resulting from 

horizontal collaboration among carriers. 

Adaptive large neighborhood 

search heuristic for routing 

problems 

Cooperative game theory for 

profit allocation 

 X X 

Bahinipati et al., 

2009 

Assessing the level of collaboration between partners. Analytic hierarchy process–

fuzzy logic model (AHP–

FLM) 

X   

Ballot and 

Fontane, 2010 

Reducing transportation CO2 emissions through the pooling 

of supply chain networks. 

Mathematical equations 
X   

Hernández et al., 

2011 

Carrier-carrier collaboration for small- to medium-sized less-

than-truck-load carriers. 

Branch-and-cut algorithm 
  X 

Gonzalez-Feliu 

and Grau, 2012 

Proposed a framework for logistic pooling and an ex-ante 

evaluation to compare collaboration and noncollaboration 

scenarios. 

Simple heuristic 

  X 
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3. PROBLEM DESCRIPTION 

 

In this section, a special case of a pooled logistic problem is considered. We assume that many enterprises aim to share their 

depots and transportation fleets to distribute their products to their common customers. We assume that each enterprise should 

be assigned to only one depot. Consequently, a set of enterprises is assigned to each depot. Hence, a routing problem should 

be solved for each depot. Certainly, the solution of the assignment problem at the first level affects the solution of the routing 

problem at the second level. We note that it is possible to not use some depots. Thus, the considered problem is an integrated 

location, allocation and routing problem (ILARP). The main questions concern which enterprise is assigned to which depot 

and what routes are taken by the vehicles in each used depot. The main difference between this problem and the classic 

ILARP is that one customer can be visited more than one time since he or she may have orders from different enterprises. 

The core components of the considered distribution network are as follows. 

- E: set of enterprises. 

- D: set of depots. 

- C: set of customers. 

- DEMANDce: demand of customer c from enterprise e. 

- CAPd: capacity of depot d. 

- CAP_LV: capacity of large vehicles. 

- CAP_SV: capacity of small vehicles. 

- COST_LV: transportation cost per km for large vehicles from enterprises to depots. 

Pan et al., 2013 Investigated the environmental impact of supply chain 

pooling and analyzed the transportation cost. 

Mixed-integer linear 

programming 
X   

Taieb et al., 2014 Studied the impact of the pooling of means and resources in 

logistics networks. 

Mathematical programming 
X  X 

Yang et al., 2015 Considered the collaborative distribution between two 

logistics service providers (LSPs) with the objective of 

reducing costs and delivery times. 

Mathematical models 

  X X 

Montoya-Torres et 

al., 2016 

Compared the allocation and routing decisions in 

collaborative and noncollaborative scenarios. 

MILP models for single-depot 

VRP and for allocation 

problems 

X X X 

Kaewpuang et al., 

2017 

Collaboration between small shippers to share their own 

vehicles and create a vehicle pool. 

Integer programming and 

stochastic programming 

models 

Cooperative game theory 

 X X 

Quintero‐Araujo et 

al., 2017 

Studied the horizontal collaboration concept in integrated 

facility location and routing decisions and compared the 

noncollaborative scenario with two cooperative scenarios. 

Biased randomization with a 

variable neighborhood search 

(BR-VNS) algorithm 

X  X 

He et al., 2018 Carrier collaboration with parts of orders to reduce the 

stochastic order of shipper and transportation costs. 

Hybrid ant colony 

optimization (ACO) 

heuristics 

  X 

Habibi et al., 2018 Studied the collaborative hub location problem in which two 

distribution networks collaborate to determine the best 

location of a hub to serve their nodes. 

Mathematical formulation 

X X X 

Debroy and 

Sarmah, 2019 

Carrier collaboration by sharing unused vehicle capacity and 

deciding how much to share. 

Algorithms 
  X 

Dolati, Espinouse 

et al., 2021 

Formulated a pooled problem called the multi-depot VRP 

(MDVRP) and focused on compatibility constraints in which 

the network cannot be fully pooled. 

Binary matrix to model 

compatibility in the allocation 

phase 

Simulated annealing and 

variable neighborhood search 

algorithms for routing 

X X X 

Jerbi, Jribi et al., 

2022 

Studied supply chain pooling strategies to reduce CO2 

emissions. 

Discrete event simulation 
X   

This study Investigated the saving in transportation costs when adopting 

a pooled transportation approach suitable for large-size 

instances. 

Genetic algorithm (GA) and 

Clarke & Wrights Saving 

(CWS) Heuristic. 

X  X 
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- COST_SV: transportation cost per km for small vehicles from depots to customers. 

- DISTij: Euclidean distance from node i to node j in km. 

- 𝑁𝑇 𝑒: number of trips from enterprise e to its assigned depot d. 

- F: frequency of a route per year. 

- TC: total annual transportation cost. 

- 𝑇𝐶_𝐹𝐿: total annual transportation cost of the first level. 

- 𝑇𝐶_𝑆𝐿: total annual transportation cost of the second level. 

- NRd: number of routes from depot d. 

- RDdr: distance of route r from depot d in km. 

- NV: total number of required small vehicles. 

- CMdr: cumulative demand of the customers served by route r of depot d. 

- FR: average vehicle fill percentage. 

 

3.1 Assumptions 

 

1. Each enterprise should be assigned to only one concentration depot. 

2. Direct shipment from enterprises to customers is not allowed. 

3. At the first level, the large vehicles start at an enterprise, visit one depot, and then return to the same enterprise. At 

the second level, the small vehicles start at a depot, visit one or more customers, and then return to the same depot. 

4. Connections between depots are not allowed. 

5. The number of days of separation between two consecutive deliveries is constant. 

6. A vehicle's capacity fits the demand of any customer. If the customer's demand is greater than the vehicle's 

capacity, the demand of this customers is duplicated as much as needed to fit with the capacity of the vehicle. 

7. Each customer's demand is satisfied. 

8. Vehicles are homogeneous with predefined capacities. 

9. The number of vehicles is not specified in advance. 

10. The distance matrix is symmetric; i.e., the distance from node i to node j is equal to the distance from node j to 

node i. 

11. The cost per km for the small and large vehicles is a linear function of the Euclidean distance. 

 

The considered problem is a two-echelon location routing problem that has two levels. At the first level, products are 

shipped from the enterprises to the depot. The products are then distributed to the customers from these selected depots. This 

is an NP-hard problem because it combines the facility location problem (FLP) and the vehicle routing problem (VRP), which 

are both NP-hard problems. Decisions are made at both strategic and operational levels. The assignment of depots to 

enterprises and the locations of the depots are strategic decisions, whereas the routing strategy to distribute products from the 

selected depots to customers is an operational decision. Once a depot is selected and assigned to firms, customer demands 

are delivered from this assigned depot. The costs involved in this problem to be optimized include the annual cost of 

transporting products from firms to their assigned depots (i.e., TC_FL) and the annual cost of routing from the assigned depots 

to customers (i.e., TC_SL). The total annual transportation cost, TC, is therefore equal to the sum of these two costs. 

 

𝑇𝐶 = 𝑇𝐶_𝐹𝐿 + 𝑇𝐶_𝑆𝐿.  (1)  

 

The Euclidian distance from node i to node j, DISTij, is calculated as: 

 

DISTij = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2
  (2)

  

where x and y are the x-coordinates and y-coordinates of nodes i and j, respectively. 
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First Level: 

 

𝑁𝑇 𝑒 = ⌈(𝐹 × (∑ 𝐷𝐸𝑀𝐴𝑁𝐷𝐶
𝑐=1 𝑐𝑒

) )/𝐶𝐴𝑃_𝐿𝑉⌉  (3)

                               

𝑇𝐶_𝐹𝐿 =  ∑ (2 × (𝐶𝑂𝑆𝑇𝐿𝑉) × (𝑁𝑇 𝑒) ×𝐸
𝑒=1 (𝐷𝐼𝑆𝑇 𝑒 𝑑𝑒

) )  (4)                                                                 

             

where de represents the depot assigned to enterprise e. 

 

Second Level: 

 

𝑇𝐶_𝑆𝐿 = 𝐹 × 𝐶𝑂𝑆𝑇_𝑆𝑉 × ∑ ∑ 𝑅𝐷𝑑𝑟
𝑁𝑅𝑑
𝑟=1𝑑∈𝐷   (5)

  

 

𝑁𝑉 = ∑ 𝑁𝑅𝑑𝑑∈𝐷   (6) 

  

 

FR=100 ×
∑ ∑

𝐶𝑀𝑑𝑟
𝐶𝐴𝑃𝑆𝑉 

𝑁𝑅𝑑
𝑟=1𝑑∈𝐷

𝑁𝑉
  (7)

  

The number of trips required to deliver the demand from each enterprise to its assigned depot using large vehicles is calculated 

using Equation (3). Equations (4) and (5) calculate the total annual costs of the first and second levels, respectively. The 

number of required small vehicles and the average fill rate of each small vehicle are calculated using (6) and (7), respectively. 

Although the problem can be solved in two separate steps (i.e., the assignment of depots to enterprises and then the VRP from 

each selected depot), this method may lead to a suboptimal solution when compared with the integrated approach, which 

simultaneously handles both tasks. In this paper, the integrated problem of depot location, assignment and vehicle routing is 

solved in a pooled transportation system. 

 

3.2 Descriptions of Scenarios 

 

Three scenarios are examined to determine whether a pooled transportation system can reduce the transportation costs of 

potential collaborating companies. We first consider a noncollaborative scenario, and then we introduce two collaborative 

scenarios. Detailed descriptions of these scenarios are given in the following subsections. 

 

3.2.1 Noncollaborative Scenario 

 

In this noncollaborative scenario (NCS), each company has its own depot and fleet of vehicles to distribute its products. This 

scenario is commonly used by companies and is likely to produce long-distance routes. Therefore, this scenario is expected 

to provide the worst results in terms of travel distance and time (Montoya-Torres et al., 2016). An NCS example involving 

three enterprises, four depots, and three customers is illustrated in Figure 1. 

 

 

 
 

Figure 1. Noncollaborative scenario (NCS) 
 

  

Enterprise 1

Enterprise 2

Enterprise 3

Depot 1

Depot 2

Depot 3

Depot 4

Customer 1

Customer 2

Customer 3
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3.2.2 Collaborative Scenario (Type 1) 

 

This type of collaborative scenario represents a strict collaborative scenario, denoted as an SCS. Each enterprise must 

collaborate with another to share a joint depot and their fleets of vehicles. An example of an SCS involving three enterprises 

that share only one depot to deliver their products to three joint customers is shown in Figure 2. 

 

 
 

Figure 2. Strict collaborative scenario (SCS) 

 

3.2.3 Collaborative Scenario (Type 2) 

 

In a free collaborative scenario (FCS), enterprises can share a depot and fleets of vehicles with other enterprises or operate 

their supply chains individually. For example, Figure 3 illustrates an FCS in which enterprise 1 has its own depot and fleet 

of small vehicles, whereas enterprises 2 and 3 share depot 3 and a joint fleet of small vehicles. 

 

 
 

Figure 3. Free collaborative scenario (FCS) 

 

3.3 An Illustrative Example 

 

The example summarized in Figure 4 illustrates depot assignment to enterprises and vehicle routing in both collaborative and 

noncollaborative scenarios. The required distances between nodes and customer demands are shown in Tables 2 and 3, 

respectively. The components of this example are as follows: 

- Two enterprises (E1 and E2). 

- Three depots (D1, D2, and D3). 

- Three customers (1, 2, and 3). 

- Two types of vehicles (small and large). 

- Small vehicles deliver products from depots to customers with an assumed capacity of CAP_SV = 10. 

- Large vehicles deliver products from each enterprise to a depot and have a capacity of CAP_LV = 40. 

- The route frequency per year F=100. 

 

Enterprise 1

Enterprise 2

Enterprise 3

Depot 1

Depot 2

Depot 3

Depot 4

Customer 1

Customer 2

Customer 3

Shared routes

Enterprise 1

Enterprise 2

Enterprise 3

Depot 1

Depot 2

Depot 3

Depot 4

Customer 1

Customer 2

Customer 3

Shared routes
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Figure 4. Distances between the nodes of the illustrative example 

Table 2. Distances between the Required Nodes 

 

From To Distance 

E1 D1 2.00 

 D2 2.24 

 D3 2.83 

E2 D1 2.83 

 D2 2.24 

 D3 2.00 

D1 C1 1.00 

 C2 1.41 

 C3 2.24 

D2 C1 1.41 

 C2 1.00 

 C3 1.41 

D3 C1 2.24 

 C2 1.41 

 C3 1.00 

C1 C2 1.00 

 C3 2.00 

C2 C3 1.00 

 

 Table 3. Demand of Customers 

 

 

All feasible routes and the related costs of the NCS are shown in Table 4. The total costs of E1 and E2 are 1113.00 and 

840.40, respectively. Thus, TC = 1953.4; this solution is presented in Figure 5. E1 delivers its demand to D1 in one shipment 

using a large vehicle. From D1, two small vehicles are needed to deliver products to customers since CAP_SV = 10, and the 

total demand of the three customers from enterprise 1 is equal to 11. On the other hand, E2 delivers its demand to D2 in one 

shipment using one large vehicle and needs only one small vehicle to deliver its products to customers. 

All feasible routes and their related costs in the strict collaboration scenario are summarized in Table 5; in the optimal 

solution, detailed in Figure 6, TC = 1542.16. In this scenario, only one depot, D2, is used. Each enterprise delivers its product 

with its own fleet of large vehicles to the shared depot in one shipment. As each customer's demand from both enterprises is 

collected in D2 to be delivered by a common fleet of small vehicles, only two small vehicles are needed to deliver products 

to customers. 

 

E1 E2

D1 D2 D3

1 2 3

Enterprise no. 
Demand 

Customer 1 Customer 2 Customer 3 

1 4 6 1 

2 3 3 2 
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Figure 5. The optimal solution of the NCS of the illustrative example 

 

Table 4. Solution for the NCS of the Illustrative Example 

 
Depot Enterprise 1 Enterprise 2 

 Route 1 Route 2 Route 3 

Cost 

route 1 

Cost 

route 2 

Cost 

route 3 TC Route 1 Route 2 

Cost 

route 1 

Cost 

route 2 TC 

D1 E1-D1-E1 D1-1-2-D1 D1-3-D1 448.00 341.00 448.0 1237.00 E2-D1-E2 D1-1-2-3-D1 452.80 524.0 976.8 

 E1-D1-E1 D1-1-3-D1 D1-2-D1 448.00 524.00 282.0 1254.00 - - - - - 

 E1-D1-E1 D1-2-3-D1 D1-1-D1 448.00 465.00 200.0 1113.00 - - - - - 

D2 E1-D2-E1 D2-1-2-D2 D2-3-D2 501.76 341.00 282.0 1124.76 E2-D2-E2 D2-1-2-3-D2 358.40 482.0 840.4 

 E1-D2-E1 D2-1-3-D2 D2-2-D2 501.76 482.00 200.0 1183.76 - - - - - 

 E1-D2-E1 D2-2-3-D2 D2-1-D2 501.76 341.00 282.0 1124.76 - - - - - 

D3 E1-D3-E1 D3-3-2-D3 D3-1-D3 633.92 341.00 448.0 1422.92 E2-D3-E2 D3-3-2-1-D3 320.00 524.0 844.0 

 E1-D3-E1 D3-3-1-D3 D3-2-D3 633.92 565.00 282.0 1480.92 - - - - - 

 E1-D3-E1 D3-2-1-D3 D3-3-D3 633.92 465.00 200.0 1298.92 - - - - - 

 

 
 

Figure 6. The optimal solution of the SCS of the illustrative example 

 

Table 5. Solution for the SCS of the Illustrative Example 

 

Depot Enterprise 1 and Enterprise 2 

 Route 1 Route 2 Route 3 Route 4 
Cost 

route 1 

Cost 

route 2 

Cost 

route 3 

Cost 

route 4 
TC 

D1 E1-D1-E1 E2-D1-E2 D1-1-3-D1 D1-2-D1 448.00 452.80 524.00 282.00 1706.80 

D2 E1-D2-E1 E2-D2-E2 D2-1-3-D2 D2-2-D2 501.76 358.40 482.00 200.00 1542.16 

D3 E1-D3-E1 E2-D3-D2 D3-3-1-D3 D3-2-D3 633.92 320.00 524.00 282.00 1759.92 

 

d
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4. SOLUTION METHODS 
 

On the one hand, exact methods for the pooled transportation problem are computationally expensive since this problem is 

NP-hard. Indeed, previous works that aimed to solve similar problems with exact methods only considered instances with 

small or medium sizes (Ouhader and Elkyal, 2016), where the number of nodes in the largest graph is only 58. On the other 

hand, a GA successfully solved larger instances in the case of the two-echelon location routing problem (Dalfard et al., 2013), 

which is very similar to the problem considered in this paper. Indeed, the size of the graphs considered in this latest paper 

reaches 160 nodes. The solution to the two problems requires solving a location problem at the first level and a routing 

problem at the second level. Thus, a GA is proposed to solve each scenario described in Section 3.2. The assignment of the 

enterprises to the depots is presented as a chromosome. An initial population is generated, and the standard steps of selection, 

crossover and mutation are applied. The assessment of each chromosome requires solving as many VRP problems as the 

number of depots used. In this case, a single run of the genetic algorithm requires the intensive use of a VRP solver. Since 

the exact solution of the VRP is time-consuming, a very fast and efficient heuristic from the literature is used. A detailed 

description of the proposed GA is given in the following section. 

 

4.1 Genetic Algorithm 

 

GAs form a popular class of evolutionary algorithms that have shown the ability to solve large-scale NP-hard problems. In 

the 1970s, Holland John (1975) developed a GA to understand natural adaptive systems. GAs were then applied to 

optimization and machine learning in the 1980s (De Jong 1985, Goldberg and Holland 1988). 

A GA starts by creating a set of solutions called a population. Then, a series of processes are performed in each 

population generation, including evaluating each individual, selecting individuals to be parents, and altering each individual 

or parent via genetic operators. A fitness function is used to evaluate each individual in a population for each generation. 

Genetic operators include crossover and mutation operators. Crossover operators cut and paste parts of two or more 

individuals to create a new individual, i.e., an offspring, with a certain crossover probability, whereas mutation operators 

make changes within a single individual with a specific mutation probability. Finally, each individual's fitness is evaluated, 

and the best individual survives to the next generation. The GA continues this process until a termination condition is met. 
Algorithm 1 gives a detailed description of a standard GA. 

Several parameters must be considered when designing a GA, including the population size, number of generations, 

crossover probability, and mutation probability. Furthermore, the process of generating the initial population, the selection 

method, the genetic operators, the fitness function, and the termination conditions must be predefined. 

 

Algorithm 1 Genetic Algorithm (GA) 

1. Generate an initial population. 

2. For each chromosome in the population, do: 

- Calculate the value of the fitness function. 

        End for 

3. While the stopping criteria is not satisfied: 

- Select parents for reproduction. 

- Perform crossover with a probability of pc. 

- Perform mutation with a probability of pm. 

- Repair offspring as necessary. 

                      For each offspring: 

o Calculate the fitness. 

o If an offspring’s fitness is better than that of the best solution, update the best solution. 

                     End for. 

            - Select the best chromosome to be in the next generation. 

         End while. 

4. Return the best solution found. 

 

4.1.1 Solution Representation 

 

A vector of positions encodes each solution. Such a solution is called a chromosome. The elements within a chromosome are 

called genes. In our case, the number of genes in each chromosome represents the number of enterprises. Furthermore, the 

value of each gene is the selected depot for the related enterprise. A representative chromosome is shown in Figure 7, where 
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there are five enterprises (E1, E2, E3, E4, and E5) and three depots (D1, D2, and D3). Here, D1 is assigned to E2 and E3; D3 

is assigned to E1, E4, and E5; and D2 is not assigned to any enterprise. 

 

 
 

Figure 7. Solution representation of a chromosome, where D is used to represent the depot assigned to each enterprise E 

 

4.1.2 Generating the Initial Population 

 

The first step in implementing a GA is the generation of an initial population. Here, the initial population is randomly 

generated. In the case of the SCS, we ensure that a depot is either assigned to at least two enterprises or ignored. In contrast, 

in the case of the NCS, we oblige that no depot is assigned to more than one enterprise. 

 

 

4.1.3 Selection Methods 

 

Selection methods are essential for obtaining better solutions in a population. During selection, two parents are selected from 

the population of a particular generation for reproduction. To ensure diversification, individuals with high fitness functions 

maintain some chance of being selected as parents. Many selection methods are available, including tournament selection, 

roulette wheel selection, stochastic universal sampling, and random selection (Talbi, 2009). 

 

4.1.4 Crossover Operators 

 

A crossover operator defines the extent to which the characteristics from parents’ chromosomes are present in the generated 

offspring. For each parent, a random number is generated; if the random number is less than the predetermined crossover 

probability, the crossover is performed. Otherwise, no changes are made to the parents. Many crossover operators are used 

for performing crossover, including one-point, two-point, and uniform crossover operators (Talbi, 2009). 

 

4.1.5 Mutation Operators 

 

A mutation operator is a genetic operator that alters the characteristics of a single chromosome. The mutation of each gene 

of a chromosome depends on the mutation probability. Small mutation probability values are recommended [0.001, 0.01] 

(Talbi, 2009). Many mutation operators have been used to perform gene mutations, including insertion, swapping, and 

inversion (Talbi, 2009). 

 

4.1.6 Repair Method 

 

After crossover and mutation, the resulting chromosome may violate problem constraints; thus, a repair method must be 

applied to repair the chromosome. Here, three repair methods are applied. The first repairing method was applied to the NCS. 

In the NCS, as each enterprise has a unique depot, if any depot appears more than once in a chromosome, then this depot is 

replaced by another depot that does not exist in the chromosome. This process is repeated for all genes within a chromosome 

until each depot is assigned to only one enterprise. The second repairing method was applied to the SCS. In the SCS, each 

depot must be assigned to more than one enterprise; thus, if any depot appears only once in a chromosome, a repairing method 

attempts to make that depot appear more than once or ignore it to satisfy pooling. The third repairing method was applied to 

avoid exceeding the capacity of the depots: When multiple enterprises share a single depot, and the demand of their customers 

exceeds the capacity of that depot, the fitness value of such chromosomes is multiplied by a large number to exclude it from 

the future generation. 

 

4.1.7 Chromosome Evaluation 

 

Each chromosome is evaluated by calculating the total annual transportation cost, which is obtained as a sum of the cost of 

each of the two levels. At the first level, the annual cost of supplying products from enterprises to depots, i.e., TC_FL, is 

easily calculated. At the second level, the annual routing cost required for vehicles to deliver products from depots to 

customers, i.e., TC_SL, is computed using the CWS heuristic. 
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4.1.8 Chromosome Survival 

 

The chromosome with the lowest calculated fitness value is selected to be passed to the next generation to ensure that the 

algorithmic performance is non-decreasing. 

 

4.1.9 Stopping Criteria 

 

The GA terminates when the stopping criteria are met. The stopping criteria can be the maximum number of generations, the 

maximum CPU time, or any other prespecified parameter. The maximum number of generations is used in the proposed 

algorithm. 

 

4.2 Clarke and Wright's Savings Algorithm 

 

The Clarke and Wright savings (CWS) algorithm, which is commonly applied to generate fast and reasonable solutions to 

VRP problems, is selected to compute the routing cost of each chromosome. This heuristic utilizes an iterative procedure to 

calculate the distance savings obtained when customer nodes are combined rather instead of establishing a single route for 

each customer node (Clarke and Wright, 1964). 

There are two versions of the CWS algorithm: a sequential version and a parallel version. The sequential version builds 

one route at a time until no more feasible merge option exists and then begins a second route until all nodes are included; the 

parallel version builds more than one route at a time. The pseudocode of the proposed parallel version of the CWS algorithm is 

detailed in Algorithm 2. 

 

Algorithm 2 Clarke and Wright's Savings (CWS) 

1. Calculate the distance (DISTij) from node i to node j for all nodes. 

2. Using 𝑆𝑖𝑗 = 𝐷𝐼𝑆𝑇𝑖0 + 𝐷𝐼𝑆𝑇0𝑗– 𝐷𝐼𝑆𝑇𝑖𝑗 , calculate the savings in terms of distance when customers i and j are 

grouped in a joint route instead of establishing a single route for each. 

3. Sort the resulting savings pairs in descending order to create a “savings list.” The pair (i,j) with the greatest 

savings, Sij, is chosen first for building routes. 

4. For each pair of nodes (i,j) in the sorted list, if the vehicle capacity and the maximum allowed time are satisfied 

and if one of the following cases is satisfied, then combine nodes i and j into one route. 

4.1 Neither node i nor j exists in any route: create a new route containing both i and j. Go to step 5. 

4.2 One of the nodes (i or j) is located at either the beginning or end of an existing route (i.e., just after or just 

before the depot, respectively): add the node that does not exist in the route beside the existing node in the 

same route. Go to step 5. 

4.3 Nodes i and j are located in two different existing routes and are located at either the beginning or the end 

of a route: merge the two routes, and ensure that the two nodes are beside each other. 

5. If all the nodes are covered, or all the pairs are explored, go to step 6; otherwise, go to step 4. 

6. If any node is not included in any route, then create a new personal route for it. 

7. Evaluate the total distance of each route. 

 

5. RESULTS AND DISCUSSION 
 

5.1 Algorithm Implementation and Data Generation 

 

The proposed methodology was implemented in the C++ programming language using Microsoft Visual Studio 2010. 

Computational experiments were run on a PC with an Intel® core TM i7-4720HQ processor at 2.6 GHz and 16 GB of memory. 

To evaluate the proposed scenarios, fourteen benchmark instances of the capacitated VRP with a single depot, described by 

(Christofides N 1979), were considered. These instances were modified to fit the requirements of the pooled transportation 

problem. 

- Seven instances had only vehicle capacity constraints, whereas the other seven instances had capacity, maximum 

route time, and drop time constraints. 

- The number of nodes ranged from 51 to 200 nodes. 

The first node referred to the depot coordinates, and the remaining nodes were customer coordinates and the demand for 

each customer. To adapt these benchmark instances to suit this work, the numbers of enterprises and depots were first determined. 

- The number of enterprises |E| = 2 + 0.1 × (number of nodes). 
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- The number of depots was randomly generated in the interval [|E|, 1.5×|E|]. 

Among the customers of the original instances, we randomly selected |E| nodes to represent the enterprises and |D| nodes 

to represent the depots. The remaining nodes were considered customers in the case of the pooled transportation system. 

- The demand for each customer was randomly generated between [5, 25] units. 

- CAP_SV = 140, 160, or 200 (as described in the original instances). 

- CAP_LV = 4 × CAP_SV. 

- F = 100/year (number of visits for each customer per year). 

- The capacity of a depot was equal to the total customer demand divided by two. 

The fourteen generated random instances and their corresponding constraints, numbers of nodes, numbers of enterprises, 

numbers of depots, small vehicle capacities, and depot capacities are summarized in Table 6. In addition, the utilized data are 

available upon request from the corresponding author. 

 

Table 6. Characteristics of the Generated Instances 

 

 

5.2 Performance Evaluation 

 

Each scenario was evaluated using the objective function in Equation (1) for the total annual transportation cost. Then, other 

performance metrics were evaluated, including the number of vehicles used, the average fill rate of the vehicles, and the CPU 

time of each scenario. 

 

5.3 Parameter Configuration of the Genetic Algorithm 

 

Pilot-run experiments were conducted to determine the configuration of the GA parameters. Among these parameters were 

the maximum number of generations, population size, selection method, crossover operator, crossover probability, mutation 

operator, and mutation probability. In some of these pilot runs, we fixed the selection, the crossover and the mutation 

operators. In other runs, a random selection of the operators was considered. Experiments showed that the random selection 

of the operators yielded better results than the predefined ones. The cost reduction ranged between 2.8% and 26.8% in the 

FCS case due to dynamic selection. The FCS version was used in the pilot-run experiments since it enabled collaborative and 

noncollaborative solutions. Table 7 illustrates the selected parameters and the operators of the proposed GA. 

 

  

Instance no. Constraints No. of Nodes No. of E No. of D Small Vehicle Capacity Depot Capacity 

1 C 51 7 9 160 1902 

2 C 76 9 10 140 3797 

3 C 101 12 12 200 7002 

4 C 151 17 20 200 14716 

5 C 200 22 32 200 23905 

6 C, D 51 7 8 160 1945 

7 C, D 76 9 10 140 3866 

8 C, D 101 12 16 200 6570 

9 C, D 151 17 21 200 14578 

10 C, D 200 22 27 200 24884 

11 C 121 14 18 200 9383 

12 C 101 12 17 200 6327 

13 C, D 121 14 18 200 9324 

14 C, D 101 12 12 200 6849 

C: capacity constraint, 

D: distance constraint. 
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Table 7. Parameters of the Proposed GA 

 

 

5.4 Comparison Among the Proposed Scenarios 

 

5.4.1 Total Cost Comparison 

 

To assess the impact of the pooled transportation system, a comparison between the NCS and the two collaborative scenarios 

(the SCS and FCS) is stated. The resulting total annual transportation cost of each scenario and their improvement rates (in 

percentages) are displayed in Table 8. A graphical configuration of the achieved improvement is also demonstrated in  

Figure 8. The collaborative scenarios (i.e., the SCS and FCS) provided savings from 29% to 53% in all cases. It is worth 

noting that significant savings were found when distance constraints were considered for the routes, as in instances 6–10 and 

13–14. If the distance of the route is constrained, the vehicle cannot visit many customers, and its fill rate will be low. Thus, 

the collaboration will undoubtedly increase the fill rate and reduce the total number of routes required to cover the full 

demand. 

 

Table 8. Total Annual Transportation Costs (TC) of the Proposed Scenarios 

 

Instance no. TC (SCS) TC (FCS) TC (NCS) 
Gap (%) Gap (%) 

SCS vs. NCS FCS vs. NCS 

1 273858.8 277082.9 414722.9 -33.97 -33.19 

2 617332.4 602594.6 883451.9 -30.12 -31.79 

3 801383.1 819882.8 1294689 -38.1 -36.67 

4 1570296 1618557 2509164 -37.42 -35.49 

5 2647715 2635548 3771182 -29.79 -30.11 

6 284721 285800.2 471975.3 -39.67 -39.45 

7 606786.8 619841.8 1317823 -53.96 -52.96 

8 745227.6 731755.3 1341940 -44.47 -45.47 

9 1637425 1747076 3090836 -47.02 -43.48 

10 2771732 2707933 5039435 -45 -46.27 

11 1556581 1548978 2407306 -35.34 -35.66 

12 798016.2 793485.4 1112689 -28.28 -28.69 

13 1630427 1594244 2728717 -40.25 -41.58 

14 831334.5 828298.3 1472728 -43.55 -43.76 

Average 1198059.74 1200791.24 1989761.36 -39.07 -38.90 

 

Gap (%) SCS vs. NCS = 100× (TC (SCS) – TC (NCS))/TC (NCS) 

Gap (%) FCS vs. NCS = 100× (TC (FCS) – TC (NCS))/TC (NCS) 

Parameter Method/Value 

Maximum Number of Generations 200 

Population Size 130 

Selection Method Tournament, roulette wheel, stochastic universal sampling, and random selection 

Tournament Size 3 

Crossover Operator One-point, two-point, and uniform 

Crossover Probability 0.9 

Mutation Operator Insertion, swapping, and inversion 

Mutation Probability 0.01 
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Figure 8. Total Annual Transportation Costs of the Proposed Scenarios 

 

5.4.2 Allocation of Depots to Enterprises 

 

The first step toward solving the integrated warehouse location and VRP was to allocate depots to enterprises. The resulting 

allocations for all instances are shown in Table 9, where the best chromosomes found by the GA are displayed. For the strict 

collaboration scenario (SCS), at least two enterprises were assigned to the same depot. In the free collaborative scenario 

(FCS), a depot could be assigned to one or more enterprises. Thus, each enterprise was free to collaborate or not collaborate 

with the remaining enterprises. The NCS requires that there is a unique depot for each enterprise. 

 

Table 9. Allocation of Depots to Enterprises 

 
Instance Scenario Best Chromosome Instance Scenario Best Chromosome 

1 SCS 5-4-4-2-5-2-5  SCS 15-15-1-6-1-1-6-6-6-1-6-15 

 FCS 5-1-4-4-5-4-5 8 FCS 14-15-14-14-14-6-6-6-6-14-15-14 

 NCS 5-4-2-1-8-3-7  NCS 10-0-3-14-9-15-1-4-6-8-57 

2 SCS 3-7-8-7-3-8-8-3-3 9 SCS 9-1-11-9-9-1-9-1-11-1-11-11-11-1-1-9-11 

 FCS 8-7-7-6-6-8-8-8  FCS 10-2-1-2-9-1-10-10-1-2-9-10-10-1-1-1-10 

 NCS 3-7-8-9-4-6-0-5-2  NCS 9 1 10 7 8 14 20 19 5 3 15 2 13 11 4 6 0 

3 SCS 0-0-1-1-1-0-1-6-6-0-6-6  SCS 
18-4-18-5-4-5-4-4-18-5-9-9-18-5-18-4-18-5-23-23-
5-18 

 FCS 0-0-9-9-9-6-6-0-6-0-0-6 10 FCS 6-5-4-5-4-6-4-6-5-4-5-5-6-5-4-5-6-5-6-5-4-5 

 NCS 1-3-10-0-11-2-6-4-5-8-9-7  NCS 
18-5-1-4-17-10-20-9-25-6-8-0-2-7-15-21-23-24-
19-26-12-11 

4 SCS 11-10-11-11-10-1-1-1-1-10-10-10-11-1-9-9-1 

11 

 

SCS 4-1-1-1-0-4-4-0-4-0-1-4-4-1 

 FCS 10-11-11-9-9-10-9-11-11-11-11-10-10-10-9-9-9 FCS 4-4-1-0-0-1-0-4-1-0-1-0-0-4 

 NCS 9-2-11-17-7-13-5-19-3-16-10-14-12-4-0-6-1 NCS 4-0-1-5-8-11-13-2-12-10-7-9-6-3 

 SCS 28-9-31-31-9-31-31-5-31-5-28-9-9-31-31-31-5-5-9-31-31-31 
 
 SCS 10-9-10-9-10-9-11-9-11-10-11-10 

5 FCS 6-31-31-31-5-31-5-31-5-5-5-5-31-5-31-31-5-31-31-5-5-6 12 FCS 8-8-10-10-10-9-8-9-9-9-10-8 

 NCS 18-29-17-28-7-30-20-24-9-4-8-25-12-2-16-31-21-14-23-6-10-0  NCS 10-9-3-12-15-11-5-8-13-1-16-14 

6 SCS 5-4-4-2-5-2-5  SCS 4-1-4-4-0-0-1-1-4-4-1-4-4-1 

 FCS 5-4-4-4-5-2-5 13 FCS 4-4-1-4-4-4-0-0-0-4-1-0-4-0 

 NCS 5-4-2-1-7-3-0  NCS 4-5-6-14-0-9-10-3-2-12-7-1-11-8 

7 SCS 8-7-7-7-8-4-8-8-4  SCS 9-11-11-8-8-8-11-8-11-8-9-8 

 FCS 3-7-7-7-4-4-7-3-4 14 FCS 9-11-8-8-11-11-11-8-8-11-11-9 

 NCS 1-7-4-0-8-6-3-2-5  NCS 8-9-0-10-4-11-2-6-7-3-5-1 

 

5.4.3 Number of Vehicles and Average Fill Rate 

 

The number of vehicles required to carry the total demand for each instance is displayed in Table 10. Although the 

number of used vehicles fluctuated between decreasing and increasing after adopting the collaboration mechanism, the 

average relative gap indicates a reduction of approximately 10% of the used vehicles in both cases: the FCS and SCS.  
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Table 11 presents the average vehicle fill rate in each instance. This latest indicator shows the significant impact of 

collaboration vs. noncollaboration. Indeed, the average fill rate of the vehicles jumped from 76.32% in the case of 

noncollaboration to approximately 86% in the case of collaboration (the SCS and FCS). The number of vehicles and the fill 

rate for each scenario are illustrated in Figure 9 and Figure 10, respectively. 

 

Table 10. Variation in the Number of Vehicles 

 

Instance No. NV (SCS) NV (FCS) NV (NCS) 
Gap (%) 

SCS vs. NCS 

Gap (%) 

FCS vs. NCS 

1 27 27 28 -3.57 -3.57 

2 63 61 60 5 1.67 

3 79 80 76 3.95 5.26 

4 169 166 157 7.64 5.73 

5 282 314 254 11.02 23.62 

6 29 30 38 -23.68 -21.05 

7 64 61 112 -42.86 -45.54 

8 76 74 95 -20 -22.11 

9 167 163 240 -30.42 -32.08 

10 294 304 388 -24.23 -21.65 

11 109 106 103 5.83 2.91 

12 72 70 74 -2.7 -5.41 

13 113 114 126 -10.32 -9.52 

14 78 76 99 -21.21 -23.23 

Average 115.86 117.57 132.14 -10.40 -10.36 

 

Table 11. Variation of the Average Fill Rate 

 

Instance No. FR (SCS) FR (FCS) FR (NCS) 
Gap (%) 

SCS vs. NCS 

 Gap (%) 

FCS vs. NCS 

1 88.08 88.08 84.93 3.7 3.7 

2 86.1 88.92 90.4 -4.76 -1.64 

3 88.63 87.53 92.13 -3.8 -5 

4 87.08 88.65 93.74 -7.1 -5.42 

5 84.77 76.13 94.11 -9.93 -19.11 

6 83.84 81.04 63.98 31.03 26.67 

7 86.29 90.54 49.31 75 83.61 

8 86.45 88.79 69.16 25 28.38 

9 87.29 89.44 60.74 43.71 47.24 

10 84.64 81.86 64.13 31.97 27.63 

11 86.08 88.52 91.1 -5.5 -2.83 

12 87.88 90.39 85.51 2.78 5.71 

13 82.51 81.79 74 11.5 10.53 

14 87.81 90.13 69.19 26.92 30.26 

Average 86.25 86.56 77.32 15.75 16.41 
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Figure 9. Number of vehicles in each scenario 

 

 
 

Figure 10. Average vehicles fill rates (in percentages) 

 

5.5.4 CPU Time 

 

The computational time of an optimization algorithm is commonly used to assess its performance. The resulting CPU times 

in seconds for the 200 iterations of the proposed genetic algorithm are displayed in Table 12 and summarized visually in 

Figure 11. All the tested instances are solved in a reasonable time under the three considered scenarios. 

 

Table 12. Comparison of the CPU Time in seconds 

 

Instance 

No. 
SCS FCS NCS 

1 77.865 81.306 134.874 

2 96.936 106.615 182.351 

3 126.449 146.526 263.273 

4 207.231 282.86 473.828 

5 316.078 486.014 786.795 

6 100.728 102.339 173.608 

7 123.821 135.329 240.409 

8 162.73 188.325 317.13 

9 246.815 335.469 556.885 

10 367.668 527.625 899.996 

11 214.13 264.852 443.5 

12 185.289 212.498 362.83 
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Instance 

No. 
SCS FCS NCS 

13 226.507 276.397 466.449 

14 191.702 216.524 393.588 

 

 
 

Figure 11. CPU time (s) 

 

5.4.5 Discussion 

 

When implementing a pooled transportation system, the results indicate that the collaborative scenarios outperformed the 

noncollaborative scenario. The total annual transportation cost for the collaborative scenarios was reduced by 38.1% for 

instances with only vehicle capacity constraints. On the other hand, a maximum reduction (53.96%) was observed for 

instances with vehicle capacity and distance constraints. Furthermore, the number of depots used for the collaborative 

scenarios is fewer than that used in noncollaborative scenarios. A further decrease in costs is expected if the fixed cost of 

opening a depot is considered in the objective function. In addition, the average vehicle fill rate increased, and the average 

number of vehicles decreased. Indeed, Table 10 and  

Table 11 show that if the average vehicle fill rate for the NCS is high, the number of vehicles could be fewer than those used 

in collaborative scenarios. However, when the average fill rate of the NCS is low and almost less than 75%, as in distance-

constrained instances, the fill rate of the collaborative scenarios increases, reducing the number of used vehicles by 45.5%. 

Although the results show that implementing a pooled transportation system is encouraging, partners must overcome 

challenges and implementation issues before collaborating. Recent research surveyed and classified some of the challenges 

related to horizontal collaboration. (Pan et al., 2019) discussed several implementation issues related to horizontal 

collaboration regarding the decisions on the mechanism of exchanging requests, gain and information sharing, organization, 

and management and governance issues. According to a review by (Serrano-Hernández et al., 2017), the challenges of 

implementing horizontal collaboration also include maintaining a relationship of trust, finding a suitable partner, sharing 

profits/losses, and establishing a suitable framework. 

 

6. Conclusions and Future Work 

 

This work aims to determine whether a pooled transportation system can enhance the performance of collaborative 

enterprises. Three main key performance indicators are used to compare the collaborative and noncollaborative scenarios: the 

total annual transportation cost, the number of used vehicles, and the average fill rate. A common approach is used to solve 

the different considered scenarios. This approach employs a genetic algorithm that solves the integrated warehouse location 

and routing problems. The final solution includes an assignment of the depots to the enterprise and a routing plan from each 

depot to the final customers. To assess the fitness of each chromosome, the well-reputed Clark and Wrights saving algorithm 

is used to solve the VRP problem at each depot. Fourteen benchmark instances from the literature were adapted and modified 

to suit the proposed problem. One noncollaborative scenario and two collaborative scenarios were compared (i.e., the NCS 

and the SCS and FCS, respectively) to evaluate the potential cost savings achieved by employing a pooled transportation 

system. In the NCS, each enterprise had its own depot and fleet of vehicles. In the SCS, at least two enterprises needed to 

share a depot and vehicle routing; in the FCS, enterprises were free to share or not share depots and vehicles. The results 
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show that implementing a pooled transportation system may reduce the total annual transportation costs of the collaborative 

scenarios by more than 28% in all instances; a maximum reduction of 53.96% was achieved when capacity and distance 

constraints were included. A maximum reduction of 45.5% was observed in the number of vehicles. The average vehicle fill 

rate was also improved, especially when the vehicle fill rate under the NCS was almost less than 75%. Moreover, the number 

of visited customers per vehicle was reduced using the collaborative scenarios due to the cumulative demand of joint 

customers. Future work will be conducted to consider the heterogeneous fleet version and the time widow constraints for the 

customers. 
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