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Emergency medical services (EMS) are an important part of the modern healthcare system that tries to provide timely medical 

care and transportation to patients to reduce morbidity and mortality. Performance evaluation of such EMS systems to 

determine measures such as mean service rates, dispatch probabilities, busy probabilities, and on-scene times is necessary to 

design effective and efficient systems. In this paper, we consider an urban EMS system that employs three types of emergency 

vehicles, including advanced life support (ALS), basic life support (BLS) and first responder vehicle (FRV). We consider 

two types of patients: type A requires ALS to be dispatched, while type B patients are expected to be served by BLS 

ambulances. We also consider co-located servers so ambulances of different types can be co-located at the same station. The 

presence of different types of servers (ambulances) and the patients with different dispatch policies, along with co-located 

servers, makes it applicable to a more realistic system. We first discuss a modification of the hypercube queueing model for 

the proposed system and then present an approximate approach for application in large EMS systems. These approaches are 

compared against a simulation-based model by computing server utilization, service times and on-scene time of ambulances. 
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1. INTRODUCTION 
 

Emergency medical services (EMS) play a key role in modern healthcare systems by providing out-of-hospital services and 

transportation for patients in need of urgent care. EMS systems aim to respond quickly to ensure that patients receive care at 

the earliest. Planning of EMS systems requires addressing various strategic, tactical, and operational level planning problems 

such as the location of ambulance stations and ambulances, dispatching policies of ambulances, crew allocation and 

scheduling, and routing of ambulances (Aringhieri et al., 2017). Both long-term and short-term planning of EMS systems 

require the prediction of equilibrium behavior and accurate evaluation of system performance. The need to evaluate system 

performance motivates the development of models for accurate and efficient estimation of busy probability, availability, and 

dispatch probability of ambulances. 

Assessing the effectiveness of public safety systems like fire and EMS systems is crucial to guarantee efficient services 

and timely care to those who need it. Response time, which is the time taken to respond to an emergency call, is one of the 

major performance indicators of the performance of EMS systems (Mendonca and Morabito, 2001). However, coverage and 

survival probability-based measures are most commonly used to evaluate planning decisions in EMS systems literature 

(McLay and Mayorga, 2010). Planning decisions require evaluating the various possible configurations of the system to find 

the most optimal system. Therefore, determining the performance measures of an emergency services system is critical for 

evaluating the different configurations of the system. Some of the key performance indicators of EMS systems include the 

proportion of calls that can be served in a given horizon, the probability that a call is lost, the mean service time taken to serve 

different call types, and the mean response time required to reach patient locations (Beojone and de Souza, 2017).  

Computing the common performance measures, such as coverage and survival probability, requires an estimation of the 

probability that a specific ambulance responds to any arriving call. Dispatch probability represents the probability that a 

specific ambulance station will dispatch an ambulance to serve an emergency call from a given demand zone. Dispatch 

probability is a function of the arrival rate of emergency calls, the number of busy ambulances, and the preference order of 
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the ambulance stations. Thus, dispatch probabilities provide a means to calculate various performance measures using patient 

locations, location of ambulances, and conditional probabilities of ambulance availability. Busy probability represents the 

probability that an ambulance will be busy when an emergency call arrives at the ambulance station. The availability of 

ambulances estimates the probability that an ambulance will be available or free when an emergency call arrives. Thus, busy 

probability and availability of ambulances are complementary and calculating one enables us to determine the other value. 

Calculating the busy probability and dispatch probability of ambulances enables us to determine other important performance 

indicators of the ambulance system. 

Various approaches have been proposed and applied in the literature to estimate the dispatch probability of ambulances. 

These approaches include the hypercube queueing model (HQM), simulation and approximation-based approaches. HQM is 

an analytical approach developed to evaluate performance measures of public safety systems (Larson, 1974; Larson, 1975). 

Simulation-based approaches try to develop a representation of a system and analyze various what-if scenarios, thus enabling 

policy decisions. The need for approximate approaches arises due to high computational power and time requirements, even 

for reasonable problem size in the case of HQM and simulation approaches (Karimi et al., 2018). A major assumption in 

most studies is that all ambulances are identical and can serve all calls, whereas, in actual systems, different types of 

ambulances are employed and usually serve different patient types. This means the dispatch policies are dependent on the 

type of ambulances available at a station. 

Additionally, the majority of existing models in the field neglect factors such as multiple vehicles stationed at the same 

station (co-location) and the scenario where multiple vehicles are dispatched to handle the same emergency call. Instead, 

these models typically assume that vehicles are positioned at separate locations and that only one vehicle is sent to handle 

each call. This study aims to bridge this gap in the literature by presenting a model that takes these factors into account. The 

proposed model can assist public emergency services decision-makers in making decisions related to determining vehicle 

placement and designing emergency districts. 

In this paper, we focus on an urban EMS system that employs three types of ambulances, including advanced life support 

(ALS), basic life support (BLS) and first responder vehicle (FRV). We consider two types of patients: type A requires ALS 

to be dispatched, while type B patients are expected to be served by BLS ambulances. We also consider co-located servers, 

i.e., multiple ambulances can be located at a single station, and even ambulances of different types can be co-located. The 

presence of different types of servers (ambulances) and the patients with different dispatch policies, along with co-located 

servers, makes it applicable to a more realistic system. First, we discuss a hypercube queueing model for the proposed system 

that is adapted for the proposed system, considering multiple ambulances located at the same stations and different service 

times based on the patient type and ambulance type.  

The organization of this article is as follows. Section 2 presents an overview of the existing literature related to the 

proposed problem. Section 3 presents a brief description of the system under consideration, explaining the assumptions and 

dispatch policies. Section 4 outlines the HQM-based approach. Section 5 details the proposed approximation-based approach 

for performance evaluation. The computational experiments and the results obtained are presented in Section 6. Finally, we 

outline the conclusions of the work in Section 7. 

 

2. REVIEW OF LITERATURE 

 

Computing the key performance measures requires estimating the probability that a specific ambulance responds to any 

arriving call from a demand zone. This parameter is called dispatch probability, which depends on the arrival rate of calls, 

service rate, number of ambulances busy or available, the preference order of ambulances, and the busy probability of 

ambulances. Dispatch probabilities provide a means to calculate other performance measures using the location of the 

received call, the location of ambulances, and the conditional probabilities of ambulance availability. Various approaches 

have been proposed in the literature to estimate dispatch probabilities, including HQM (Geroliminis et al., 2011; Iannoni et 

al., 2008), simulation (Lee et al., 2012; McCormack et al., 2015), and approximate approaches (Saydam and Aytug, 2003).  

Larson (1974) introduced HQM to evaluate the performance of mobile units involved in emergency services, including the 

fire service, police, and ambulances. Larson (1975) developed an approximate HQM that uses an iterative procedure to 

provide solutions for systems with a large number of ambulances. Chelst and Barlach (1981) extend the HQM to incorporate 

multiple simultaneous dispatches and provide both exact and approximate approaches to the problem. They evaluate 

performance measures specific to multiple dispatches of ambulances, such as paired travel times and delays between the 

arrival of the first unit and the backup unit. Jarvis (1985) proposes an approximation algorithm for a multi-server loss system 

with individual servers that are independent and multiple patient types while taking into consideration the server-dependent 

nature of service times. Brandeau and Larson (1986) extend HQM to incorporate varying service times based on server 

location and better travel time estimation approaches. 

Similarly, Goldberg and Szidarovszky (1991) present an approximate heuristic approach for computing vehicle busy 

probabilities while considering varying service times. Burwell et al. (1993) developed and applied a hypercube-based model 
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for emergency systems with server units co-located at a station, thus causing ties in the dispatch of servers. Saydam et al. 

(1994) compare the performance of various coverage models and suggest that hypercube models should be used along with 

coverage models for conducting post-optimality analysis. 

Mendonça and Morabito (2001) apply a modified HQM to an ambulance deployment scenario on a highway with partial 

backups. Galvao and Morabito (2008) review various HQM extensions and present an extension to MEXCLP and MALP 

that embeds HQM into these location models. Takeda et al. (2007) investigate the impact of decentralizing the ambulance 

services and also the impact of additional ambulances on the system by applying the HQM to an EMS in Brazil. Iannoni and 

Morabito (2007) present a hypercube model that takes into account various factors such as partial backup, distinct servers 

and call types, multiple dispatches, and different dispatch policies in an EMS located on a highway. Atkinson et al. (2006) 

present two heuristic approaches for HQM that can be used to evaluate realistic emergency systems with customer-dependent 

service time and priority in requests. Atkinson et al. (2008) present a 3n hypercube model that considers the servers 

responding to a call from their primary and secondary locations, and they present two heuristics for the problem. Iannoni et 

al. (2008) developed an HQM that considers partial backup and allows for dispatching multiple ambulances for an emergency 

call. They embed the developed HQM model in a GA-based framework for districting in an EMS system. Morabito et al. 

(2008) evaluate the impact of assuming homogenous servers in an HQM and conclude that the assumption of homogeneity 

leads to significant inaccuracies in predicting operational performance indicators of non-homogeneous systems. 

Geroliminis et al. (2009) present a hypercube model that considers the spatial and temporal variation in demand and 

service rates between different servers. Budge et al. (2009) explore a performance evaluation model to consider multiple 

ambulances at a single station (co-location) and allow them to calculate station-specific busy probabilities. Knight et al. 

(2012) proposed an iterative approach that initially assumes a busy probability for all ambulances and then solves the location 

problem to get a new solution in the first iteration. The busy probability is then revised using the new solution found in the 

previous iteration. This process is repeated iteratively until convergence is reached. Boyacı and Geroliminis (2015) present a 

model that considers the Spatiotemporal uncertainty in demand and service time while also considering partial backup of 

ambulances. Ansari et al. (2017) present an approximate hypercube spatial queueing model that considers the co-location of 

ambulances at stations and accounts for multiple dispatches of ambulances. Beojone and de Souza (2017) present an HQM 

that considers queue priorities, i.e., the priority of one patient type over another patient based on their condition. Karimi et 

al. (2018) present a performance evaluation model that considers partial backups and variations in queue capacities. They 

evaluate models with both zero and infinite queue capacities and allow service times to vary based on call priority and both 

customer and server locations.  

Rodrigues et al. (2018) present an approximate AHQ-based method for emergency maintenance systems in the 

agricultural sector in Brazil, where they consider different service rates along with prioritized queues and partial backup. 

Yoon and Albert (2018) proposed a spatial approximation model based on the Hypercube approach for a system with cut-off 

priority queues where a set of servers become reserved for calls with higher priority as soon as the number of ambulances 

available reaches a prespecified cut-off limit. The proposed model estimates the performance measures of the system where 

the ambulance queues are thus prioritized under congestion. Beojone et al. (2021) propose a model that accounts for dedicated 

servers to serve only patients of a specific type (or criticality) and co-located servers in an HQM. Liu et al. (2021) present a 

cooperative HQM that allows multiple simultaneous dispatches for a single emergency incident. 

From the above discussion, we can observe that many researchers have used hypercube, approximation, and simulation 

models to estimate the busy probability of ambulances. Based on the literature review, we also observe that the performance 

evaluation of systems with multiple vehicle types and patient types with hierarchy and priority between them has not been 

addressed. Similarly, the possibility of variation of service time based on server location, patient location, and type of server 

utilized has not been considered in the literature. Since hypercube queueing models for large urban EMS systems are 

computationally difficult to solve, approximate methods to address these issues need to be developed. Therefore, we propose 

an iterative approximate approach to estimate the busy probability, assuming each station as M/M/s queueing system. This is 

similar to Knight et al. (2012) as they use the M/M/s approximation for each ambulance station. The M/M/s queuing 

approximation is used to obtain the estimate of the busy probability for the given arrival rate, service rate and number of 

ambulances at each iteration. However, Knight et al. (2012) get a single estimate of the busy probability for each configuration 

of the ambulance system. In our algorithm, for a given configuration of the EMS, the approximation approach is solved 

iteratively to obtain a better estimate for busy probabilities. This is necessary since we consider multiple ambulance types 

and partial backup, which makes it difficult to obtain a single busy probability estimate directly for each solution. Integrating 

the proposed approximate method within an ambulance location model can better estimate the server-level busy probability 

and, thus, the expected performance of a given configuration of ambulance locations. 
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3. DESCRIPTION OF THE SYSTEM 

 

3.1 Assumptions 

 

We wish to develop a performance evaluation approach for the system described above that estimates the dispatch probability 

of ambulances from different stations to each zone and the busy probability of ambulances at each station. Some key 

assumptions are as follows. 

 

(i) The arrival rate of calls from each demand zone is assumed to follow the Poisson distribution and is independent 

of other zones. 

(ii) All calls require transportation. Therefore, even when an FRV (non-transporting) ambulance is sent to a patient 

location, it has to be followed by a BLS.  

(iii) The average travel time for each ambulance type between all pairs of demand zones and ambulance stations is 

known. 

(iv) The ambulances are located at pre-determined (base) stations and return to the same base after serving a call. 

(v) The number of ambulances of each type located at each station is known. 

(vi) The order of preference for dispatching an ambulance to any zone is fixed and known. This preference order is 

represented using a rank of ambulances. 

 

3.2 Dispatch policies 

 

The dispatch policies for different types of ambulances considered for the two types of patients are as follows. 

 

3.2.1 For type A patients (life-threatening) 

 

(a). An ALS ambulance from the preferred primary station (with rank 1) is sent if available. 

(b). If an ALS ambulance is not available at a higher-ranked station, an ALS from the next preferred station is 

dispatched.  

(c). Only if an ALS ambulance is unavailable at any preferred stations, a BLS ambulance is dispatched in the same 

order of station preferences as ALS. 

(d). If all ALS and BLS ambulances at preferred stations are busy, the call is lost. 

 

3.2.2 For type B patients (non-life-threatening) 

 

(a). If a BLS ambulance is available at a primary station, it is dispatched.  

(b). If a BLS ambulance is unavailable at a higher-ranked station, then a BLS from the next-ranked station is 

dispatched. 

(c). If a BLS ambulance is unavailable at any of the preferred stations, an FRV from the nearest station is sent. The 

preference order of stations for FRV is also the same as for ALS and BLS. 

(d). If an FRV is dispatched, a BLS is dispatched to the location as soon as one becomes available. Since FRV cannot 

provide transport, a BLS has to be dispatched. 

(e). If no BLS or FRV is available when a call arrives, the call is lost. 

 

In the subsequent sections, we describe the three approaches for the performance evaluation of EMS systems and discuss 

how they can be implemented for the proposed system. 
 

4. HYPERCUBE QUEUEING MODEL-BASED APPROACH 

 

The hypercube model introduced by Larson (1974) models the emergency response system as a spatially distributed queueing 

system. The HQM, in combination with Markovian analysis approximations, has been one of the most effective approaches 

to describe emergency systems (Larson, 1974, 1975; Larson and Odoni, 1981). Some of the major advantages of the HQM 

include the ability to incorporate uncertainty related to EMS systems and retain the identity of each server while considering 

the cooperation within servers. The HQM represents each server individually by expanding the state space of the multi-server 

systems, which allows to incorporate complex dispatch policies of ambulances. The state space equations enable calculating 

the probabilities of different states of the system at equilibrium by solving a linear system of O(2N) equations. These steady-
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state probabilities can then be used to calculate various important performance measures related to the system, such as mean 

response times, server utilizations, number of dispatches from an ambulance located in any region, and other similar measures. 

The original HQM has been extended by various researchers (Larson, 1975; Halpern, 1977; Chelst and Barlach, 1981; 

Jarvis, 1985; Burwell et al., 1993; Mendonca and Morabito, 2001). These extensions relax various limiting assumptions of 

the original HQM and improve the overall computational efficiency of the model in evaluating emergency response systems. 

For example, the extension presented by Chelst and Barlach (1981) allows for simultaneous multiple identical dispatches of 

patrol vehicles to the same zone. Whereas the extension by Mendonça and Morabito (2001) allows not only multiple 

dispatches of ambulances but also considers partial backup, where only a subset of all servers can be used as a backup for 

each zone. Other researchers have combined the hypercube model with optimization techniques, as seen in the works of Batta 

et al. (1989), Saydam and Aytug (2003), Chiyoshi et al. (2003), and Galva˜o et al. (2005). Applications of the hypercube 

model in urban emergency medical services in the US can be seen in the works of Larson and Odoni (1981), Chelst and 

Barlach (1981), Brandeau and Larson (1986), Burwell et al. (1993), and Sacks and Grief (1994). The hypercube model has 

been applied more recently to analyze deployment in the event of terrorist attacks and other major emergencies (Larson, 

2004). In Brazil, applications of the hypercube model can be found in urban emergency systems (e.g., Takeda et al., 2007) 

and highways (Mendonca and Morabito, 2001; Iannoni et al., 2008). 

The HQM assumes that the entire region being analyzed is divided into small units called atoms (zones). Ambulances 

(servers) are considered to be located at stations and dispatched when a call arrives at a station. Each demand zone is 

associated with a preference list that assigns priority orders for stations representing the order in which the ambulances are 

dispatched to that specific demand zone. Generally, the nearest server is given the first preference for an atom, and other 

ambulances are ranked according to the time taken to reach that atom. The call arrival rate and service time for each atom are 

assumed to be known. The hypercube model expands the simple M/M/m/m queueing system using the state-space description 

such that each server is represented individually. In a typical HQM, ambulances are considered to have two states. An 

ambulance could be either busy, represented by (1), or available (free), represented by (0). For example, {010} indicates that 

there are three ambulances, and ‘ambulance 2’ is busy serving a patient while ‘ambulance 1’ and ‘ambulance 3’ are available. 

So, when there are m ambulances in a system, the representation is an m-dimensional hypercube. Each state is associated 

with a linear equation that balances the entering probability and leaving probability of that state. Therefore, there are 2m 

linear equations associated with an m-ambulance system, and solving these simultaneous equations gives the probability of 

each state. These probabilities are then used to calculate server-level workload, mean service time, and mean response time.  

An example of the states of a simple HQM for an EMS system with two servers and one demand zone is shown in 

Figure 1. The state represented by {00} indicates both ambulances are idle and available, while {11} indicates that both 

ambulances are busy and not available. In the system shown in Figure 1, λ represents the arrival rate of calls, whereas μ_1 

and μ_2 represent the service rate of ambulance 1 and ambulance 2, respectively. The state-space equations for the two-server 

system in Figure 1 are given by equations (1) to (5). 

 

 
 

Figure 1. HQM states for two-server system 
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𝜆𝑃{00} = 𝜇1𝑃{01} + 𝜇2𝑃{10} (1) 

 

(𝜆 + 𝜇1)𝑃{01} = 𝜆𝑃{00} + 𝜇2𝑃{11} (2) 

 

(𝜆 + 𝜇2)𝑃{10} = 𝜆𝑃{00} + 𝜇1𝑃{11} (3) 

 

(𝜇1 + 𝜇2)𝑃{11} = 𝜆𝑃{01} + 𝜆𝑃{10} (4) 

 

𝑃{00} + 𝑃{01} + 𝑃{10} + 𝑃{11} = 1 (5) 

 

The value of state-space probabilities is obtained by solving the simultaneous equations (1) to (5). The state-space 

probabilities are used to calculate the busy probability of each ambulance. The value of dispatch probability 𝑑𝑖𝑗 , the 

probability that an ambulance i is dispatched to attend a call from zone j, is calculated using equation (6). 

 

𝑑𝑖𝑗 =
𝜆𝑗

(1 − 𝑃𝑙𝑜𝑠𝑠)𝜆
∑ 𝑃𝐵

𝐵∈𝐸𝑖𝑗

, (6) 

 

where 𝜆𝑗 is the arrival rate of the calls from zone 𝑗, 𝑃𝐵 is the probability that a server is busy (busy probability), and 𝑃𝑙𝑜𝑠𝑠 is 

the sum of all probabilities where all preferred servers are busy (called loss probability). 

 

4.1 Dispatch policies 

 

The HQM described above has some limitations when applied to a realistic EMS system. To apply the HQM for the proposed 

system, we make two key modifications, which are described subsequently. 

 
4.1.1 Layering 

 

To account for multiple ambulance types with ALS as dedicated servers and BLS for type B patients and the different types 

of patients, we apply the process of layering. Layering refers to representing a demand zone or ambulance station by multiple 

zones or stations (Beojone et al., 2021). For example, a demand zone from where two types of calls (type A and type B) 

arrive can be considered as two separate demand zones (say zone 1 and zone 2) such that zone 1 is associated with only type 

A calls and zone 2 is associated with only type B calls. Similarly, a station with three types of ambulances can be replaced 

by three stations with one type of ambulance at each location. Although layering increases the number of demand zones and 

stations in the problem, it allows us to consider different arrival rates for different call types and service times for different 

types of ambulances. 
 
4.1.2 3n hypercube model 

 

While the general HQM presented above assumes that a server has only two states, i.e., it is either busy or available, there 

are situations where it is necessary to consider more than two states. For the system under consideration, there are three 

possible states of BLS ambulances. The possible states for all three ambulance types are explained below. 

(i) ALS: The server is either busy serving a type A call or free, indicated by {1} or {0}, respectively. 

(ii) A BLS ambulance can be either free, represented by {0} or serving a type A or type B call from a zone, indicated 

by {1}. Additionally, BLS can be used for the transportation of a patient that has been served by FRV, represented 

by {2}. This allows for the consideration of different service times based on the type of patient the ambulance serves. 

(iii) FRV ambulances are either free or busy serving a call that could not be served by any of the BLS ambulances. 

For example, consider a system with three ambulances, one ambulance for each type of ALS, BLS and FRV. Let {0,0,0} 

represent the idle state for all three ambulances, then {0,1,0} represents that BLS is busy serving a type A or type B call. 

Similarly, {0,2,0} represents that BLS is busy serving a type B call where an FRV was already dispatched. In this case, the 

service time will be less because FRV has already provided emergency care, and there is only a need for transportation by 

the BLS. Therefore, if there are m ALS type of ambulances, n BLS type of ambulances, and o FRV type of ambulances, then 

the total number of possible states is given by 2𝑛 3𝑚 2𝑜, i.e. 2𝑚+𝑜 3𝑛. Also, we assume that a BLS will be sent to the location 

where the FRV is serving as soon as a preferred BLS becomes available, and the FRV will become free immediately. Using 

the concept of layering and the 3n hypercube model, we can adapt the HQM to be applied to the proposed problem. 

 



Nadar et al. Performance Evaluation of Emergency Medical Service Systems 

 

691 

 
 

Figure 2. A representative simulation model using Simulink for the system with two ambulances and one demand zone 

 

4.2 Simulation approach 

 

The analytical HQM approach presented above makes various assumptions about the system. A simulation model can be 

built to represent the system to compare and validate the HQM-based approach (Goldberg et al., 1990; de Souza et al., 2015). 

For example, we consider that BLS is assigned to a call served by FRV as soon as it is available, and the FRV is freed. A 

simulation model can help validate the impact of the assumption on the performance measures. Simulation models are 

developed for healthcare systems to estimate and optimize the system, especially in emergency departments (Gokalp, 2021; 

Wang et al., 2024; Bang et al., 2023)). Therefore, we build a discrete event simulation model to represent the proposed system 

using ‘SimEvents’ available in the Simulink package of MATLAB software. 

The simulation model was built to reflect the arrival of calls from each zone, and calls of each type were assigned a 

unique arrival rate. The simulation model also allows calls arriving from different zones belonging to each distinct type to 

have their unique service time distribution. This is not possible using the HQM, as it assumes each station has a single service 

time irrespective of call locations. The simulation model can also incorporate individual travel times for each call type. A 

warm-up period is allowed to account for the transient nature of outputs in the initial period of the simulation run. Similarly, 

the simulation run length was set as 50000 hours to allow the model to provide more reliable results. An example of the 

simulation model for a small system with two ambulances (one ALS and one BLS) located at the same station and one demand 

zone is shown in Figure 2. 

 

5. APPROXIMATE APPROACH 

 

Although the HQM and simulation methodologies discussed in the preceding sections are helpful in evaluating the 

performance of an EMS system, both of these methods have some serious drawbacks. For real-world systems with a large 

number of ambulances, the analytical HQM approach necessitates solving a very large number of linear equations. When 

different types of ambulances and patients are taken into account, the assumption that service time is independent of the type 

of call used in conventional HQM is severely limiting. The model becomes considerably more challenging to solve when the 
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dimensions of the HQM are increased from 2𝑛 to 3𝑛, as shown in Section 4, to account for varied service times. For example, 

in the case of the 2𝑛 hypercube model, the number of equations required to represent a system with 15 ambulances will be 

215, i.e., 32768. However, if each ambulance is allowed to take three states, the number of equations required to solve for 15 

ambulances becomes 315, i.e. 14348907. 

The simulation model allows easily incorporating different service times for calls from different zones and calls 

belonging to different patient types. However, a separate simulation model is required to be built to evaluate each 

configuration, which can be a tedious task. Ambulance location problems require evaluating a large number of configurations 

of different ambulance locations to find an optimal solution, even for medium-sized problems. Another limitation of the HQM 

and simulation approaches is that the temporal variation in demand and service time cannot be explicitly considered since a 

separate model has to be developed for each period. The approximate approach can provide an efficient way to obtain quick 

but reliable estimates for performance measures.  

The simulation model allows us to include different service times for calls coming from different zones and calls of 

different patient types. However, separate simulation models are required to evaluate different configurations of a system. 

Even for medium-sized problems, evaluating a large number of configurations of various ambulance locations is necessary 

to determine the optimal locations. The inability to explicitly consider the temporal change in demand and service time due 

to the need to create a separate model for each period is another drawback of HQM and simulation approaches. The 

approximate approach can be an effective way to get reliable performance measure estimates quickly. Therefore, an 

approximate approach can be highly useful for large-scale systems, saving time and computational power with very little loss 

in the inaccuracy of results. Another advantage of the approximate approach is that it can be easily adapted to account for 

temporal variations. We describe an approximate approach that uses a queueing-based approximation to estimate the dispatch 

probability and availability of ambulances in a system. 

 

5.1 Simulation approach 

 

Consider a system with identical ambulances located at different stations and serving a predefined set of demand zones with 

all calls being of the same patient type. Assume that the arrival rate of emergency calls arriving at each station from each 

zone is known and that the mean service rate of ambulances at each station is known. Then, each station can be represented 

by an M/M/m queuing system with a mean arrival rate and service rate where m is the number of ambulances located at the 

station. But in the proposed problem, we consider a system with heterogeneous ambulance types located at each station that 

cater to heterogeneous patient types. Therefore, we apply the layering as explained in section 4.1 to first divide each station 

into multiple stations having only a single ambulance type located. The arrival rate is then determined based on the preference 

order of ambulance stations assigned for a given demand zone and priority between ambulance types for each call type. 

To account for the priority between ambulance types and different stations, we iteratively adjust the estimate using the 

loss probability of other ambulance stations. We start by assuming the ambulances are independent of each other and obtain 

an estimate of the dispatch probability of ambulances. This dispatch probability is then used to calculate the probability of 

lost calls for each station, which is then used to obtain a better estimate of dispatch probability. The loss probability calculated 

provides a way to obtain the calls arriving at a lower-preference station or an ambulance type with lower priority for a call 

type. The dispatch probability thus obtained is again used to update the loss probability of calls for each station. The complete 

process of determining dispatch probabilities, followed by loss probabilities and then updating dispatch probabilities, is 

repeated until convergence is reached. Although this procedure does not guarantee convergence, it is necessary to limit the 

number of iterations based on the level of accuracy required. However, our computational experiments show that the dispatch 

probabilities converge within very few iterations in most cases. The summary of the notation used to represent different sets 

and key parameters is listed as follows. 

 

𝐼 Set of demand zones, 𝑖 ∈ 𝐼 

𝐽 Set of ambulance stations, 𝑗 ∈ 𝐽 

𝑇 Set of periods, 𝑡 ∈ 𝑇 

𝑅 Set of the rank of ambulance stations, 𝑟 ∈ 𝑅 

𝐾 Set of types of ambulances, 𝑘 ∈ 𝐾 = {ALS, BLS, FRV} 

𝐿 Set of types of patients representing different types of calls, 𝑙 ∈ 𝐿 = {A, B} 

𝜆𝑖𝑡
𝑙

 Average arrival rate of call type l received from demand zone i during period t 

𝜏𝑖𝑗𝑡
𝑙

 Mean service time required to serve a call of type l from demand zone i using an ambulance from station j 

during period t 
𝑦𝑗𝑡

𝑘  Number of ambulances of type k allocated to station j during period t 
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𝑑𝑖𝑗𝑟𝑡
𝑘𝑙  Dispatch probability of ambulance type k from station j with rank r to serve call type l from zone i during 

period t 

𝛿𝑖𝑗𝑟𝑡 1, if station j is assigned rank r for demand zone i during period t, 

0, otherwise 

𝜋𝑗𝑡
𝑘  Probability that all ambulances of type k are busy at station j during period t 

𝛬𝑗𝑡
𝑘  Average arrival rate of calls associated with ambulance type k at station j during period t 

𝛵𝑗𝑡
𝑘 Mean service time associated with ambulance type k at station j during period t 

𝑀𝑗𝑡
𝑘  Average service rate associated with ambulance type k at station j during period t 

 

The general procedure proposed for estimating the dispatch probabilities and busy probabilities of ambulances of any 

type can be described using the following sequence of steps. 

 

Step 1: Initialise the iteration counter 𝑖 = 0 and 𝜀 = tolerance level required. 

Step 2: Set the busy probability of ambulances 𝜋𝑗𝑡
𝑘(0)

= 0, ∀𝑗, 𝑡 and calculate 𝑑𝑖𝑗𝑟𝑡
𝑘,𝑙(0 )

. 

Step 3: Estimate arrival rate 𝛬𝑗𝑡
𝑘(0)

, service rate 𝑇𝑗𝑡
𝑘(0)

 and 𝛭𝑗𝑡
𝑘(0)

 using the dispatch probability calculated in Step 2. 

Step 4: Using the values from Step 3, calculate 𝜌𝑗𝑡
𝑘(0)

=
𝛬𝑗𝑡

𝑘(0)

𝑀
𝑗𝑡
𝑘(0) , ∀𝑗, 𝑡.  

Step 5: Update the value of busy probability to obtain 𝜋𝑗𝑡
𝑘(1)

using 𝜌𝑗𝑡
𝑘(1)

from Step 4. 

Step 6: Set 𝑖 = 𝑖 + 1. 

Step 7: Using the estimated value of 𝜋𝑗𝑡
𝑘  for each station, update 𝑑𝑖𝑗𝑟𝑡

𝑘,𝐴(𝑖 )
. 

Step 8: Update 𝜌𝑗𝑡
𝑘(𝑖)

, 𝛬𝑗𝑡
𝑘(𝑖)

 and 𝛭𝑗𝑡
𝑘(𝑖)

 using 𝑑𝑖𝑗𝑟𝑡
𝑘,𝑙(𝑖 )

 obtained in Step 7. 

Step 9: Calculate 𝜋𝑗𝑡
𝑘(𝑖)

 using updated values calculated in Step 8. 

Step 10: If |𝜋𝑗𝑡
𝑘(𝑖)

− 𝜋𝑗𝑡
𝑘(𝑖−1)

| < 𝜀, ∀𝑗, 𝑡, stop. Otherwise, go to Step 6. 

 

In the above procedure, the probability that an emergency call arriving at a station is lost, i.e., loss probability due to all 

the ambulances at the station being busy, needs to be calculated in Steps 5 and 9. This busy probability can be approximated 

by considering each station as an M/M/c queueing system. Thus, loss probability can be obtained using the Erlang-B formula 

in equation (7). 

 

𝜋𝑗𝑡
𝑘 =

𝜌
𝑗𝑡

𝑦𝑗𝑡
𝑘 

𝑦𝑗𝑡
𝑘 !

∑
(𝜌𝑗𝑡

𝑘 )𝑎

𝑎!

𝑦𝑗𝑡
𝑘 

𝑎=0

                                                                                                                  ∀ 𝑗, 𝑘, 𝑡, 
(7) 

 

where 𝜌𝑗𝑡
𝑘  is the server utilization, expressed as the ratio of arrival rate and service rate for a station, and is given by equation 

(8). 

 

𝜌𝑗𝑡
𝑘 =

𝛬𝑗𝑡
𝑘

𝑀𝑗𝑡
𝑘                                                                                                                                      ∀ 𝑗, 𝑘, 𝑡 (8) 

 

Steps (6)-(10) in the above procedure can be applied iteratively to update the value of 𝑑𝑖𝑗𝑟𝑡
𝑘𝑙  every time a new value of 

𝜋𝑗𝑡
𝐴𝐿𝑆 is estimated. 

 

5.2 Adapting the proposed approach for different ambulance types 

 

The procedure presented in Section 5.1 is a general approach that can be adapted to different ambulance types by modifying 

the equations used to calculate the busy probability (𝜋𝑗𝑡
𝑘 ), mean arrival rate (𝛬𝑗𝑡

𝑘 ), and mean service rate (𝛭𝑗𝑡
𝑘 ). In this section, 

we discuss how the proposed approximate approach can be adapted for three different types of ambulances discussed in 

Section 3. As ALS is considered as dedicated ambulance and the first preference to serve life-threatening type A calls, the 
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dispatch probability of ALS ambulances is independent of other types of ambulances. However, BLS is a general-purpose 

ambulance that can be used to serve type B calls, preferably while also being dispatched for type A patients in case of 

unavailability of ALS ambulances. Hence, for BLS ambulances, the arrival rate and dispatch probability also depend on the 

busy probability of ALS ambulances. 

Similarly, FRV is considered a backup ambulance, dispatched only if all BLS ambulances are busy when a type B call 

arrives. Therefore, calculating dispatch probability for FRV requires the busy probability of BLS ambulances. Due to this 

hierarchy between different ambulance types, we first estimate the dispatch probability of ALS and then use this to calculate 

the dispatch probability for BLS, which is then used to calculate the dispatch probability for FRV. For this purpose, we first 

apply the concept of layering and separate each ambulance type at a station as an individual station. 

 
5.2.1 Estimating busy probability for ALS 

 

For estimating the busy probability of ALS in Step 2, we begin by assuming that the busy probability of all ALS ambulances 

located at all ambulance stations is zero, i.e. 𝜋𝑗𝑡
𝐴𝐿𝑆 = 0. This assumption implies that all demand will be served entirely by 

ambulances from the station with the highest preference (rank 1) since no demand is lost from any station. The proportion of 

calls served by the station with rank 1 is then equal to 1, and it is 0 for all other stations, as shown in equation (9). ALS is 

considered a dedicated server and can only serve type A calls, i.e. 𝑑𝑖𝑗𝑟𝑡
𝐴𝐿𝑆,𝐵 = 0 for all stations. 

 

𝑑𝑖𝑗1𝑡
𝐴𝐿𝑆,𝐴 = 1, if 𝛿𝑖𝑗1𝑡 = 1

𝑑𝑖𝑗𝑟𝑡
𝐴𝐿𝑆,𝐴 = 0, otherwise

 }                                                                                                    ∀𝑖, 𝑗, 𝑟, 𝑡 (9) 

 

Using the value for 𝑑𝑖𝑗1𝑡
𝐴𝐿𝑆 from equation (9), the average arrival rate and mean service time for ALS ambulances at each 

station can be obtained from equations (10) and (11), respectively. Then, the average service rate can be given by equation 

(12). Equations (10), (11), and (12) are used in Steps 3 and 7 of the procedure to estimate the arrival rate and service rate of 

ambulances.  

 

𝛬𝑗𝑡
𝐴𝐿𝑆 = ∑ ∑ 𝑑𝑖𝑗𝑟𝑡

𝐴𝐿𝑆,𝐴𝜆𝑖𝑡
𝐴

𝑟𝜖𝑅

 

𝑖𝜖𝐼

                                                                                                       ∀𝑗, 𝑡 (10) 

 

𝛵𝑗𝑡
𝐴𝐿𝑆 =

∑ ∑ 𝑑𝑖𝑗𝑟𝑡
𝐴𝐿𝑆,𝐴𝜆𝑖𝑡

𝐴 𝜏𝑖𝑗𝑡
𝐴

𝑟𝜖𝑅𝑖𝜖𝐼

∑ ∑ 𝑑𝑖𝑗𝑟𝑡
𝐴𝐿𝑆,𝐴𝜆𝑖𝑡

𝐴
𝑟𝜖𝑅𝑖𝜖𝐼

                                                                                              ∀𝑗, 𝑡 (11) 

 

𝑀𝑗𝑡
𝐴𝐿𝑆 =  

1

𝑇𝑗𝑡
𝐴𝐿𝑆                                                                                                                              ∀𝑗, 𝑡 (12) 

 

Using the estimated value of 𝜋𝑗𝑡
𝐴𝐿𝑆, we can update the dispatch probability 𝑑𝑖𝑗𝑟𝑡

𝐴𝐿𝑆,𝐴
 for each pair of zones and stations in 

Step 9 using equation (13).  

 

𝑑𝑖𝑗𝑟𝑡
𝐴𝐿𝑆,𝐴 = ∏ ( ∑ 𝛿𝑖𝑝𝑞𝑡𝜋𝑝𝑡

𝐴𝐿𝑆

𝑝∈𝐽|𝑝≠𝑗

)

𝑞∈𝑅|𝑞<𝑟

(1 − 𝜋𝑗𝑡
𝐴𝐿𝑆)                                                            ∀𝑖, 𝑗, 𝑟, 𝑡 (13) 

 

5.2.2 Estimating busy probability for BLS 

 

As BLS ambulances are considered general-purpose ambulances, we need to consider the arrival rate for both type A and 

type B calls to calculate the dispatch probability for BLS ambulances. Similar to the procedure for ALS, we first assume 

𝜋𝑗𝑡
𝐵𝐿𝑆 = 0 and use equations (14) and (15) to calculate an initial estimate for the dispatch probability for BLS ambulances as 

required in Step 2. 

 

𝑑𝑖𝑗1𝑡
𝐵𝐿𝑆,𝐴 = ∏ (∑ 𝛿𝑖𝑝𝑞𝑡𝜋𝑝𝑡

𝐴𝐿𝑆
𝑝∈𝐽 ),𝑞∈𝑅  if  𝛿𝑖𝑗1𝑡 = 1

𝑑𝑖𝑗𝑟𝑡
𝐵𝐿𝑆,𝐴 = 0, otherwise                                       

    }                                                               ∀𝑖, 𝑗, 𝑟, 𝑡 (14) 
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𝑑𝑖𝑗1𝑡
𝐵𝐿𝑆,𝐵 = 1, if 𝛿𝑖𝑗1𝑡 = 1

𝑑𝑖𝑗𝑟𝑡
𝐵𝐿𝑆,𝐵 = 0, otherwise  

   }                                                                                                          ∀𝑖, 𝑗, 𝑟, 𝑡 (15) 

 

Next, the average arrival and service rates for BLS ambulances in Step 3 and Step 8 can be calculated using equations 

(16) and (18), respectively. 

 

𝛬𝑗𝑡
𝐵𝐿𝑆 = ∑ ∑ 𝑑𝑖𝑗𝑟𝑡

𝐵𝐿𝑆,𝐴𝜆𝑖𝑡
𝐴

𝑟∈𝑅𝑖∈𝐼

+ ∑ ∑ 𝑑𝑖𝑗𝑟𝑡
𝐵𝐿𝑆,𝐵𝜆𝑖𝑡

𝐵

𝑟∈𝑅𝑖∈𝐼

                                                                           ∀ 𝑗, 𝑡 (16) 

 

𝑇𝑗𝑡
𝐵𝐿𝑆 =

∑ ∑ 𝑑𝑖𝑗𝑟𝑡
𝐵𝐿𝑆,𝐴𝜆𝑖𝑡

𝐴 𝜏𝑖𝑗𝑡
𝐴

𝑟∈𝑅𝑖∈𝐼 + ∑ ∑ 𝑑𝑖𝑗𝑟𝑡
𝐵𝐿𝑆,𝐵𝜆𝑖𝑡

𝐵 𝜏𝑖𝑗𝑡
𝐵

𝑟∈𝑅𝑖∈𝐼

∑ ∑ 𝑑𝑖𝑗𝑟𝑡
𝐵𝐿𝑆,𝐴𝜆𝑖𝑡

𝐴
𝑟∈𝑅𝑖∈𝐼 + ∑ ∑ 𝑑𝑖𝑗𝑟𝑡

𝐵𝐿𝑆,𝐵𝜆𝑖𝑡
𝐵

𝑟∈𝑅𝑖∈𝐼

                                                     ∀ 𝑗, 𝑡   (17) 

 

𝑀𝑗𝑡
𝐵𝐿𝑆 =

1

𝑇𝑗𝑡
𝐵𝐿𝑆                                                                                                                                      ∀𝑗, 𝑡 (18) 

 

The value of 𝛬𝑗𝑡
𝐵𝐿𝑆, 𝑇𝑗𝑡

𝐵𝐿𝑆and 𝛭𝑗𝑡
𝐵𝐿𝑆 from equations (16) to (18) are then used to calculate the estimate for 𝜋𝑗𝑡

𝐵𝐿𝑆 in Step 9 

using equation (7). The value of 𝜋𝑗𝑡
𝐵𝐿𝑆 is then used to estimate 𝑑𝑖𝑗𝑟𝑡

𝐵𝐿𝑆,𝐵 and 𝑑𝑖𝑗𝑟𝑡
𝐵𝐿𝑆,𝐴 in Step 7 using equations (19) and (20), 

respectively. 

 

𝑑𝑖𝑗𝑟𝑡
𝐵𝐿𝑆,𝐵 = ∏ ( ∑ 𝛿𝑖𝑝𝑞𝑡𝜋𝑝𝑡

𝐵𝐿𝑆

𝑝∈𝐽|𝑝≠𝑗

)

𝑞∈𝑅|𝑞<𝑟

(1 − 𝜋𝑗𝑡
𝐵𝐿𝑆)                                                                     ∀𝑖, 𝑗, 𝑟, 𝑡 (19) 

 

𝑑𝑖𝑗𝑟𝑡
𝐵𝐿𝑆,𝐴 = ∏ ( ∑ 𝛿𝑖𝑝𝑞𝑡𝜋𝑝𝑡

𝐵𝐿𝑆

𝑝∈𝐽|𝑝≠𝑗

)

𝑞∈𝑅|𝑞<𝑟

(1 − 𝜋𝑗𝑡
𝐵𝐿𝑆) ∏ (∑ 𝛿𝑖𝑢𝑠𝑡𝜋𝑢𝑡

𝐴𝐿𝑆

𝑢∈𝐽

)

𝑠∈𝑅

                               ∀𝑖, 𝑗, 𝑟, 𝑡 (20) 

 

5.2.3 Estimating busy probability for FRV 

 

FRV-type ambulances are considered backup ambulances for type B calls and are used for cases where BLS ambulances are 

not available immediately. Therefore, the dispatch probability of ambulances will depend on the busy probability of BLS. 

Similar to the approaches used for ALS and BLS, we first set 𝜋𝑗𝑡
𝐹𝑅𝑉 = 0 and calculate dispatch probability using equation 

(21) in Step 2. 

 

𝑑𝑖𝑗1𝑡
𝐹𝑅𝑉,𝐵 =    ∏ (∑ 𝛿𝑖𝑢𝑠𝑡𝜋𝑢𝑡

𝐵𝐿𝑆
𝑢∈𝐽 )𝑠∈𝑅     if 𝛿𝑖𝑗1𝑡 = 1

𝑑𝑖𝑗𝑟𝑡
𝐹𝑅𝑉,𝐵 =    0,   otherwise                                       

 }                                                                        ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟, 𝑡 (21) 

 

The arrival and service rates at each station j can then be obtained using equations (22) and (24), respectively, in both 

Steps 3 and 8. The estimate of 𝑑𝑖𝑗𝑟𝑡
𝐹𝑅𝑉,𝐵

 in Step 7 can be calculated using equation (25). 

 

𝛬𝑗𝑡
𝐹𝑅𝑉 = ∑ ∑ 𝑑𝑖𝑗𝑟𝑡

𝐹𝑅𝑉,𝐵𝜆𝑖𝑡
𝐵

𝑟∈𝑅𝑖∈𝐼

                                                                                                                    ∀𝑗, 𝑡 (22) 

 

𝑇𝑗𝑡
𝐹𝑅𝑉 =

∑ ∑ 𝑑𝑖𝑗𝑟𝑡
𝐹𝑅𝑉,𝐵𝜆𝑖𝑡

𝐵 𝜏𝑖𝑗𝑡
𝐵

𝑟∈𝑅𝑖∈𝐼

∑ ∑ 𝑑𝑖𝑗𝑟𝑡
𝐹𝑅𝑉,𝐵𝜆𝑖𝑡

𝐵
𝑟∈𝑅𝑖∈𝐼

                                                                                                         ∀ 𝑗, 𝑡 (23) 

 

𝑀𝑗𝑡
𝐹𝑅𝑉 =  

1

𝑇𝑗𝑡
𝐹𝑅𝑉                                                                                                                                           ∀ 𝑗, 𝑡 (24) 
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𝑑𝑖𝑗𝑟𝑡
𝐹𝑅𝑉,𝐵 = ∏ ( ∑ 𝛿𝑖𝑝𝑞𝑡𝜋𝑝𝑡

𝐹𝑅𝑉

𝑝∈𝐽|𝑝≠𝑗

)

𝑞∈𝑅|𝑞<𝑟

(1 − 𝜋𝑗𝑡
𝐹𝑅𝑉) ∏ (∑ 𝛿𝑖𝑢𝑠𝑡𝜋𝑢𝑡

𝐵𝐿𝑆

𝑢∈𝐽

)

𝑠∈𝑅

                                   ∀𝑖, 𝑗, 𝑟, 𝑡 (25) 

 

6. COMPUTATIONAL RESULTS 

 

In this section, we present the results obtained from our computational experiments. The simulation models were implemented 

using Simulink in MATLAB-2021. The linear equations for the HQM model were solved using MATLAB-2021. We 

developed small toy instances which can be easily solved using all three approaches. The dispatch probability obtained using 

all approaches is then also used to obtain various performance measures for comparison. 

  

 
 

Figure 3. A simple EMS system with four zones and two stations 

 

Table 1. Preference order of station for calls from each zone 

 

Zone Rank 1 Rank 2 

1 Station 1 Station 2 

2 Station 1 Station 2 

3 Station 2 Station 1 

4 Station 2 Station 1 

 
6.1. Illustrative example 

 

Consider a simple system shown in Figure 3, where a region is divided into four demand zones. Each zone has an arrival rate 

for calls of each type associated with it. Two ambulance stations are located within the region: station 1 and station 2. Each 

station has one ALS, one BLS, and one FRV ambulance that can serve calls arriving at that station. The preference order for 

assigning calls from each zone to a station is given in Table 1. Station 1 is the primary station (rank 1) for zones 1 and 2, 

while station 2 is the primary station for zones 3 and 4. If the preferred ambulance for a call type is not available at the primary 

station, the call is served using an ambulance from the next ranked station. We assume that each zone has a constant and 

equal arrival rate for each type of call. The service time for each zone-station pair is assumed to be known and constant. The 

time-dependent variation in service time and demand is ignored for these instances as we are only interested in comparing 

the three approaches. 

 

  

 

Zone 2 

 

Zone 3 

Zone 4 Zone 1 

Station 1 

ALS-1, BLS-1 

FRV-1 

Station 2 

ALS-1, BLS-1 

FRV-1 
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Table 2. Arrival rate for each call type at each station 

 

Problem set Call type A Call type B 

1 0.25 0.50 

2 0.20 0.40 

3 0.40 0.60 

4 0.40 0.80 

5 0.50 1.00 

 

Table 3. Service rate for each station and demand zone pair 

 

Call 

type 

Problem 

set 

Station 1  Station 2 

Zone 1 Zone 2 Zone 3 Zone 4  Zone 1 Zone 2 Zone 3 Zone 4 

Type A 

1 1.00 1.00 0.80 0.80  0.80 0.80 1.00 1.00 

2 1.00 1.00 0.80 0.80  0.80 0.80 1.00 1.00 

3 1.25 1.25 1.00 1.00  1.00 1.00 1.25 1.25 

4 1.25 1.25 1.00 1.00  1.00 1.00 1.25 1.25 

5 2.00 2.00 1.50 1.50  1.50 1.50 2.00 2.00 

Type B 

1 1.20 1.20 1.00 1.00  1.00 1.00 1.20 1.20 

2 1.20 1.20 1.00 1.00  1.00 1.00 1.20 1.20 

3 1.50 1.50 1.20 1.20  1.20 1.20 1.50 1.50 

4 1.50 1.50 1.20 1.20  1.20 1.20 1.50 1.50 

5 2.50 2.50 1.50 1.50  1.50 1.50 2.50 2.50 

 

6.2. Input data 

 

Including the toy example presented in the previous sub-section, we created three small problem instances with the following 

characteristics. 

(a). Two demand zones, One station, Four ambulances 

(b). Two demand zones, One station, Six ambulances 

(c). Four demand zones, Two stations, Eight ambulances  

For each instance, five sets of input data were considered to generate 15 problem instances. These problem instances are 

used to validate the approaches presented in the previous sections. We apply the three approaches to determine the dispatch 

probability and other performance measures to compare these approaches. Table 2 shows the arrival data considered for both 

types of calls. Table 3 presents the service rate for both call types from every zone to each station. These instances are solved 

using all three approaches, and the results obtained are summarised. 

 

6.3. Key performance measures 

 

We use server utilization, service time, and on-scene time as the key performance measures to compare the results obtained 

from the HQM, simulation, and the proposed approximate approach.  

 

6.3.1 Server Utilization 

 

Server utilization is the probability that a server is busy during a given period. It can also be described as the proportion of 

time the server is busy in a given time interval. For the HQM, server utilization can be obtained by adding the probability of 

all the states in which a given server is busy. For the simulation model, this value is directly obtained as an output of the 

simulation run. In the case of the approximate approach, it can be obtained using the formula given in equation (26). 

 

𝑈𝑗
𝑘 = 𝜌𝑗

𝑘(1 − 𝜋𝑗
𝑘) (26) 

 

6.3.2 Server-level mean service time  

 

The mean server-level service time represents the mean of the time taken by ambulances located at a given station to serve a 

call. This service time varies from one ambulance type to another as they may serve different types of patients (calls). Also, 
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server-level service time depends on the travel time required and the arrival rate of each type of call. The server-level service 

time for different types of ambulances can be calculated using equations (11), (17) and (23) if the dispatch probability is 

known.  

 

6.3.3 System-level mean service time 

 

The system-level mean service time for a call type is the mean of the service time for all calls arriving in the system. The 

system-level service time provides a single value for service time for the whole system for each call type to compare different 

configurations. The system-level service time for call type l can be calculated using equation (27). 

 

𝜏𝑠𝑦𝑠
𝑙 =

∑ ∑ ∑ ∑ 𝑑𝑖𝑗𝑟
𝑘𝑙 𝜆𝑖

𝑙𝜏𝑖𝑗
𝑙

𝑘∈𝐾𝑟∈𝑅𝑗∈𝐽𝑖∈𝐼

∑ ∑ ∑ ∑ 𝑑𝑖𝑗𝑟
𝑘𝑙 𝜆𝑖

𝑙
𝑘∈𝐾𝑟∈𝑅𝑗∈𝐽𝑖∈𝐼

                                                                                                        ∀𝑙 (27) 

 

6.3.4 Server-level mean on-scene time 

 

The server-level mean on-scene time represents the average time an ambulance takes to reach a patient location from a given 

station after a call is received. Although this depends on the delay between the arrival of a call and the dispatch of an 

ambulance, this delay is considered to be constant in the estimations and omitted. Therefore, only the actual travel time from 

the station to the patient location is considered in calculating on-scene time. Mean on-scene time can be calculated by 

replacing the service time 𝜏𝑖𝑗
𝑙  with the response time 𝑜𝑖𝑗

𝑙  in equations (11), (17), and (23).  

 

6.4. Summary of results 

 

Table 4 compares the simulation, HQM and approximate approaches based on the server utilization for a six-ambulance 

system. Figure 4 presents a summary of the percentage difference between estimates of server utilization using the HQM and 

the approximate approach compared to the simulation approach. The percentage differences from the simulation approach 

are less than 2% for the HQM-based approach, and it is within 7% for the approximate approach. Similarly, Table 5 compares 

the three approaches based on the system-level service time for the six-ambulance system. For the system-level service time, 

the difference between HQM and simulation is within 3% for all the instances for type A calls, whereas the difference is 

within 8% for type B calls. A similar range of differences is observed between the approximate approach and simulation for 

both types of calls. The difference is within 4% for type A calls and within about 8% for type B calls. Figure 5 presents the 

average percentage difference between estimates of system-level service time using the HQM and approximate approach 

compared to the simulation approach for both type A and type B ambulances. The average difference is about 2% and 4% for 

HQM compared to simulation for type A and type B calls, respectively. Whereas the average difference is about 3% and 5% 

for type A and type B calls, respectively, between approximate approach and simulation. We can clearly observe that both 

the HQM-based approach and the approximate approach produce results that are close enough to the simulation. Table 6 

presents a comparison based on server-level service time for the problem instances. 

Similarly, Figure 6 presents the average percentage difference in server-level service time estimates for each server in 

the six-ambulance system. In the case of server-level service time, the difference between HQM and simulation is within 3%, 

and the difference is also within 2-3% for the approximate approach compared to the simulation model. Thus, we can observe 

that, overall, both approaches are able to provide good approximations for the performance measures calculated.  

We also solved two more problem sets to compare these approaches, a four-ambulance system and another eight-

ambulance system. Figure 7 compares the average difference in estimates for server-level utilization of a four-ambulance 

system. The difference in server utilization is within 5% between the HQM and simulation for all server types, while the 

difference between the approximate approach and simulation is within 6% for all server types. Similarly, Figure 8 presents a 

comparison of the average difference in estimates for server-level utilization for a four-ambulance system using different 

approaches. The HQM-based and approximate approaches produce a similar result for the service time, with a difference 

below 3% for all servers. Table 7 presents the percentage difference in the system-level service time for instances based on 

the four-ambulance system. Similar to the six-ambulance system, the difference is lower for type A calls and slightly higher 

for type B calls. Figure 9 presents the average percentage difference in system-level service time for the four-ambulance 

system. The difference is about 3% for type A calls for approximate and HQM approaches compared to the simulation 

approach. For type B calls, however, HQM results in a slightly lower difference of within 4%, while the approximate approach 

results in a difference closer to a 6% difference. 
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Table 4. Comparison of server utilization for a six-ambulance system 

 

Approach Instance 
Server 

1 2 3 4 5 6 

HQM 

1 0.26 0.26 0.43 0.43 0.04 0.05 

2 0.22 0.21 0.35 0.35 0.02 0.02 

3 0.33 0.34 0.42 0.42 0.03 0.03 

4 0.33 0.34 0.55 0.56 0.09 0.09 

5 0.26 0.26 0.45 0.46 0.03 0.03 

Simulation 

1 0.26 0.26 0.42 0.42 0.04 0.03 

2 0.20 0.21 0.33 0.33 0.01 0.01 

3 0.32 0.32 0.40 0.40 0.03 0.03 

4 0.32 0.32 0.53 0.53 0.07 0.07 

5 0.25 0.25 0.44 0.44 0.03 0.02 

Approximate 

1 0.29 0.29 0.35 0.35 0.07 0.07 

2 0.25 0.25 0.31 0.31 0.05 0.05 

3 0.34 0.34 0.36 0.36 0.06 0.06 

4 0.34 0.40 0.41 0.40 0.11 0.11 

5 0.29 0.29 0.37 0.37 0.08 0.08 

Average % difference 

HQM and Simulation 1.04 1.14 1.67 1.69 0.71 1.01 

Approximate 

and Simulation 2.94 4.04 6.56 6.96 3.90 4.19 

 

 
 

Figure 4. Average percentage difference between server utilization for a six-ambulance system 
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Table 5. Comparison of system-level service time for a six-ambulance system 

 

Approach Call type Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 

HQM 
Type A 62.72 62.64 50.93 51.01 32.09 

Type B 52.82 54.76 43.29 41.73 26.75 

Simulation 
Type A 61.74 61.43 49.72 49.71 31.19 

Type B 54.48 53.67 43.86 44.65 28.62 

Approximate 
Type A 63.31 63.08 50.92 51.56 32.20 

Type B 51.14 57.98 42.26 43.73 26.52 

% Difference 

HQM and 

simulation 

Type A 1.58 1.98 2.44 2.61 2.88 

Type B 3.05 2.03 1.30 6.52 6.52 

Approximate and 

simulation 

Type A 2.53 2.69 2.42 3.72 3.25 

Type B 6.14 8.05 3.65 2.06 7.32 

 

 
 

Figure 5. Average percentage difference between system-level service time for a six-ambulance system 

 

Table 6. Comparison of server-level service time for a six-ambulance system 
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Server 

1 2 3 4 5 6 

HQM 

1 62.72 62.72 51.75 51.75 35.49 35.49 

2 62.59 62.59 51.42 51.42 35.22 35.22 

3 50.96 50.96 42.15 42.15 25.27 25.27 

4 51.16 51.16 41.89 41.89 25.76 25.76 

5 32.11 32.11 26.68 26.68 9.53 9.53 

Simulation 

1 61.75 61.75 51.64 52.01 35.58 35.70 

2 61.44 61.42 51.77 51.91 35.51 35.55 

3 49.73 49.73 41.87 42.21 25.53 25.64 

4 49.73 49.73 41.38 42.41 25.54 26.00 

5 31.20 31.19 27.43 28.13 9.64 9.89 

Approximate 

1 63.36 63.36 51.99 51.99 35.69 35.69 

2 63.00 63.00 51.58 51.48 35.44 35.44 

3 51.03 51.03 42.09 42.09 25.59 25.59 

4 50.81 50.81 43.38 43.38 25.98 25.98 

5 32.26 32.26 26.60 26.60 10.25 10.25 

% Difference 
HQM and Simulation 2.34 2.35 1.11 1.59 0.82 1.50 

Approximate and Simulation 2.66 2.68 1.89 1.79 1.75 0.85 
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Figure 6. Average percentage difference in server-level service time estimates for a six-ambulance system 

 

 
 

Figure 7. Average percentage difference in server-level utilization estimates for a four-ambulance system 

 

 
 

Figure 8. Average percentage difference in server-level service time estimates for a four-ambulance system 
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Table 7. Percentage difference in system-level service time for a four-ambulance system 

  
Simulation and HQM 

 (% difference) 

 Simulation and Approximate 

(% difference) 

Instance Type A Type B  Type A Type B 

1 1.58 3.05  2.83 4.04 

2 1.98 2.03  2.73 0.91 

3 2.44 1.30  2.86 6.33 

4 2.61 6.52  3.07 6.39 

5 2.88 6.52  3.72 4.06 

Average 2.30 3.89  3.04 5.55 

 

 
 

Figure 9. Average percentage difference in system-level service time for a four-ambulance system 

 

Figure 10 shows the average percentage difference in the server-level service time estimates for an eight-ambulance 

system. The HQM produces service time estimates within 0.5% of the simulation approach for all servers. The mean service 

time obtained using the approximate approach is within 2% of the simulation approach for all server types. Figure 11 shows 

the average percentage difference in the server-level utilization estimates between different approaches for an eight-

ambulance system. The mean utilization estimates of the approximate approach are within 2% of the simulation approach for 

all the servers. In the case of the approximate approach, there is a slightly higher difference of about 7% for BLS, while it is 

lower than 5% for ALS and FRV. The likely reason for the difference is that we have not accounted for the calls that are 

served by BLS after FRV is sent first. Table 8 presents the percentage difference between the three approaches in the system-

level service time for the eight-ambulance system. The difference between the simulation and HQM approach is within 1% 

for both types of calls in all instances. For the approximate approach, the percentage difference is within 1% for type A calls 

and within 3% for type B calls. Figure 12 summarises the average percentage difference in system-level service time for an 

eight-ambulance system. The average percentage difference is within 0.5% for type A calls using both HQM and approximate 

approaches. The average difference is about 1.5% for type B calls using the approximate approach compared to 0.5% using 

the HQM approach. 

Figure 13 compares the on-scene time estimates for all ambulance types for the four-ambulance system. The average 

difference is within 4% for the HQM compared to the simulation for all servers of the four-ambulance system. The average 

percentage difference for the estimates obtained using the approximate approach is within 7% for all servers, with a maximum 

difference for BLS servers. Figure 14 presents a comparison of the average percentage difference between estimates of on-

scene time using different approaches for a six-ambulance system. The comparison between simulation and HQM shows a 

difference within 5% for all servers, with very low differences in the case of FRVs. Whereas the comparison between 

simulation and approximate approach shows a difference within 8% for all servers, with the highest difference being in the 

case of BLS ambulances. 

Figure 15 presents a comparison of the average percentage difference between estimates of on-scene time using different 

approaches for an eight-ambulance system. Both HQM and approximate approach produce results within 2% of the 

0

1

2

3

4

5

6

Type A Type B

A
v
er

ag
e 

%
 d

if
fe

re
n
ce

Simulation and HQM Simulation and Approximate



Nadar et al. Performance Evaluation of Emergency Medical Service Systems 

 

703 

simulation approach. The comparison between simulation and HQM shows a difference within 0.5% for all servers, whereas 

the comparison between simulation and approximate approach shows a difference of about 1.2% for all servers. 

 

 
 

Figure 10. Average percentage difference in server-level service time estimates for an eight-ambulance system 

 

 
 

Figure 11. Average percentage difference in server-level utilization estimates for an eight-ambulance system 

 

Table 8. Percentage difference in system-level service time for an eight-ambulance system 
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Average % difference 0.17 0.48 0.49 1.47 
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Figure 12. Average percentage difference in system-level service time for an eight-ambulance system 

 

 
 

Figure 13. Comparison of the average percentage difference between estimates of on-scene time using different approaches 

for a four-ambulance system 

 

 
 

Figure 14. Comparison of the average percentage difference between estimates of on-scene time using different approaches 

for a six-ambulance system 
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Figure 15. Comparison of the average percentage difference between estimates of on-scene time using different approaches 

for an eight-ambulance system 

 

Based on the above results, we observe that the approximate approach is able to provide good estimates of the various 

performance measures. Overall, the HQM performed better than the approximate approach, with very close estimates 

compared to the simulation approach. Although the difference in some instances was close to 5-8% for the approximate 

approach, considering it is very easy to implement, it is worthwhile to evaluate large EMS systems. The approximate 

approach can be easily incorporated within an ambulance allocation system to get performance estimates for the system at 

each iteration. 

 

7. CONCLUSIONS 

 

Performance evaluations of such realistic public emergency systems are necessary for planning decisions related to the design 

of the EMS systems. In this work, we consider a complex, realistic EMS system that operates three different types of 

ambulances, namely ALS, BLS and FRV, that cater to both high-priority and low-priority patients. Also, we consider ALS 

as dedicated ambulances only sent for high-priority calls, while BLS can serve both high and low-priority calls. FRV is a 

non-transport ambulance that provides only immediate emergency medical service at a patient location but is not used to 

transport a patient. We consider a system where these ambulances are used as a backup for BLS ambulances. Performance 

evaluation of such a realistic system is complicated because different ambulances may serve different types of patients and 

may, therefore, have different priority rankings. Thus, a preferred station with an ambulance available might not be able to 

serve a call, as not all ambulances can serve all calls. Additionally, each demand zone can have different arrival rates for 

different patient types and also different service times based on the type of call and the type of ambulance dispatched. 

Accounting for the priority between different ambulance types, as well as the preference between different stations combined 

with varying arrival rates and service rates, makes the proposed system more realistic. 

To determine the performance measures, we present an HQM-based approach that uses a 3n queueing system to allow 

ambulances to serve different types of calls. Additionally, we propose an iterative approximate approach to estimate the 

performance measures. The approximate approach starts by assuming all calls are served by primary stations alone and is 

used to estimate call arrival and service rates. These estimates are used further to calculate the probability of calls lost and 

then iteratively find a better estimate for the arrival and service rates. The proposed approaches are tested on three different 

simple examples. These example problems showed that the error for HQM is within 3-4% of the simulation estimates. 

Similarly, the approximate approach consistently provides results within 8% of the simulation results for all the instances 

considered. As the approximate approach takes significantly less time and is easy to implement for even large systems, it is 

a more useful approach to planning such EMS systems.  

Although the presented problem considers various real-life issues related to the performance evaluation of EMS systems, 

it has some limitations. We have not accounted for multiple simultaneous dispatches of ambulances to the same zone. The 

location of ambulances is assumed to be static and known. Thus, the dynamic relocation of ambulances is not considered 

within the model, which can be considered in future research. Also, the preference order of stations is assumed to be fixed 

and known. However, the ranking of ambulance stations can change based on the availability of ambulances and expected 

demand, which needs to be incorporated. The stochastic nature of the arrival rates, service time and response time is also not 
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considered. Another key factor that could be considered in further research is the possibility of delays due to ambulance 

diversion and blocking in the emergency department. 
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