MACHINE LEARNING METHODS AND PREDICTIVE MODELING TO IDENTIFY FAILURES IN THE MILITARY AIRCRAFT
Aicraft quality control
DOI:
https://doi.org/10.23055/ijietap.2023.30.5.8659Keywords:
Aircraft maintenance, Functional Reliability, Machine Learning, artificial intelligence (AI)Abstract
Modern aircraft are costly and require heavy investment. It is the same regardless of industries, such as commercial airlines and militaries. It is primarily about maintaining desired readiness by reducing ground time in the militaries, which is critical to maintaining air superiority and winning the war. There are two types of maintenance activities such as preventive and corrective maintenance. Preventive maintenance requires taking action before failures happen. Meanwhile, corrective maintenance reacts to failures, which takes time to buy parts and repair failed components. If we can predict aircraft failures accurately, we will be able to change corrective maintenance activities to preventive maintenance activities, which will reduce aircraft downtime and, thus, increase aircraft readiness or availability. This paper proposes multiple machine learning tools to minimize aircraft downtime to predict aircraft failures with the highest accuracy possible. This paper validates the usefulness of the proposed machine learning tools by experimenting with the actual data obtained from the maintenance record of 33 aircraft operated by the U.S. Air Forces.
Published
How to Cite
Issue
Section
License
The Author(s) must formally transfer each article's copyright before publication in the INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING. Such transfer enables the Journal to defend itself against plagiarism and other forms of copyright infringement. Your cooperation is appreciated.
You agree that the copyright of your article to be published in the INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING - THEORY, APPLICATIONS, AND PRACTICE is hereby transferred, throughout the World and for the full term and all extensions and renewals thereof, to INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING - THEORY, APPLICATIONS, AND PRACTICE.
The Author(s) reserve(s): (a) the trademark rights and patent rights, if any, and (b) the right to use all or part of the information contained in this article in future, non-commercial works of the Author's own, or, if the article is a "work-for-hire" and made within the scope of the Author's employment, the employer may use all or part of the information contained in this article for intra-company use, provided the usual acknowledgments are given regarding copyright notice and reference to the original publication.
The Author(s) warrant(s) that the article is Author's original work and has not been published before. If excerpts from copyrighted works are included, the Author will obtain written permission from the copyright owners and credit the article's sources.
The author also warrants that the article contains no libelous or unlawful statements and does not infringe on the rights of others. If the article was prepared jointly with other Author(s), the Author agrees to inform the co-Author(s) of the terms of the copyright transfer and to sign on their behalf; or in the case of a "work-for-hire," the employer or an authorized representative of the employer.
The journal does not provide the author copy of the final paper when it is published. The author(s) can make(s) a subscription to INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING - THEORY, APPLICATIONS, AND PRACTICE if they want to get the final paper that has already been published.
The journal is registered with the Library of Congress (ISSN # 1943-670X). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the journal.
The author reserves patent and trademark rights and the right to use all or part of the information contained in the article in future non-commercial works.