A KERNEL FISHER DISCRIMINANT ANALYSIS-BASED TREE ENSEMBLE CLASSIFIER: KFDA FOREST
DOI:
https://doi.org/10.23055/ijietap.2018.25.5.3703Keywords:
Classification, Ensemble Classifier, Decision Trees, Kernel Fisher Discriminant Analysis, Rotation ForestAbstract
In general, an ensemble classifier is more accurate than a single classifier. In this study, we propose an ensemble classifier called kernel Fisher discriminant analysis forest (KFDA Forest). This is a tree-based ensemble method that applies KFDA. To promote diversity, a bootstrap is used and variable sets are randomly divided into K subsets. KFDA is performed on each subset to increase classification accuracy. KFDA maximizes the distance between classes while minimizing the distance within classes. KFDA can also be applied to classification problems in a nonlinear data structure using the kernel trick because it can transform the input space into a kernel feature space, commonly named rotation, rather than a dimensionality reduction. Because new feature axes and KFDA projections are parallel, decision trees are used as a base classifier. To compare the proposed method with existing ensemble methods, we apply these to real datasets from the UCI and KEEL repositories.Published
How to Cite
Issue
Section
License
The Author(s) must formally transfer each article's copyright before publication in the INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING. Such transfer enables the Journal to defend itself against plagiarism and other forms of copyright infringement. Your cooperation is appreciated.
You agree that the copyright of your article to be published in the INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING - THEORY, APPLICATIONS, AND PRACTICE is hereby transferred, throughout the World and for the full term and all extensions and renewals thereof, to INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING - THEORY, APPLICATIONS, AND PRACTICE.
The Author(s) reserve(s): (a) the trademark rights and patent rights, if any, and (b) the right to use all or part of the information contained in this article in future, non-commercial works of the Author's own, or, if the article is a "work-for-hire" and made within the scope of the Author's employment, the employer may use all or part of the information contained in this article for intra-company use, provided the usual acknowledgments are given regarding copyright notice and reference to the original publication.
The Author(s) warrant(s) that the article is Author's original work and has not been published before. If excerpts from copyrighted works are included, the Author will obtain written permission from the copyright owners and credit the article's sources.
The author also warrants that the article contains no libelous or unlawful statements and does not infringe on the rights of others. If the article was prepared jointly with other Author(s), the Author agrees to inform the co-Author(s) of the terms of the copyright transfer and to sign on their behalf; or in the case of a "work-for-hire," the employer or an authorized representative of the employer.
The journal does not provide the author copy of the final paper when it is published. The author(s) can make(s) a subscription to INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING - THEORY, APPLICATIONS, AND PRACTICE if they want to get the final paper that has already been published.
The journal is registered with the Library of Congress (ISSN # 1943-670X). All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the journal.
The author reserves patent and trademark rights and the right to use all or part of the information contained in the article in future non-commercial works.